
LA-UR-13-28028
Approved for public release; distribution is unlimited.

Title: 2013 Final Reports from the Los Alamos National Laboratory
Computational Physics Student Summer Workshop

Author(s): Runnels, Scott R.

Intended for: Report
Web

Issued: 2013-10-16

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National
Security, LLC for the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.
By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to
publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.
Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the
U.S. Departmentof Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish;
as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

2013
Final Reports

From the

Los Alamos National Laboratory
Computational Physics Student
Summer Workshop

Assembled by: Scott R. Runnels, Ph.D.

Workshop Coordinator and
University Liaison for LANL’s Advanced
Scientific Computing Program

Included in this Report

(1) Background Information

Philosophy of the Workshop
Funding and Participation Profile
Lecture Overview
Survey Results

(2) Student Reports

Table of Contents

Background (Scott Runnels)
PDF Page

No.
Philosophy of the Workshop

5

Funding and Participation Profile

6
Lecture Overview

7

Survey Results

9

Student Reports

PDF Page
No.

Algorithms for Shock Hydrodynamics (Nathaniel Morgan, mentor)

 One Dimensional Lagrangian Hydrocode Development

15
Micah Esmond and Andrew Thurber

 Plasma Mixing in ICF Applications (Erik Vold, mentor)

 Plasma Mixing in ICF Applications

91

Daniel Fenn and Ryan Moll

 3-T Plasma Physics (Tom Masser, mentor)

 An Improved Time Step Size Control for xRAGE's 3-T Plasma Code

113
Catherine M. Gosmeyer

 A New Time Stepsize Selection Scheme for Los Alamos National
laboratory's Radiation Hydrodynamics Code RAGE

125

Brandon Wiggins, Katie Gosmeyer, and Thomas Masser

 New Algorithms for GPUs (Bob Robey, mentor)

 A GPU Accelerated Discontinuous Galerkin Scheme for Advection

145
Zechariah J. Jibben

 Compact Hash Algorithms for Computational Meshes

154

Rebecka Tumblin, Peter Ahrens, Sara Hartse, and Robert W. Robey

 MCNP Monte Carlo (Forrest Brown, mentor)

 Eigenfunction Decomposition of Reactor Perturbations and Transitions
Using MCNP Monte Carlo

174

Colin Josey and Max D. Veit

 Calculation of Spectra for X-ray Thomson Scattering Experiemnts
on Warm Dense Matter (Didier Saumon and Charles Starrett,
mentors)

 Modeling X-ray Thomson scattering spectra of warm dense matter

204

David Perkins, Andre N. Souza, Didier Saumon, and Charles, E. Starrett

 Unstructured Mesh Algorithms for Multi-Core/GPU Computers
(Jimmy Fung and Mack Kenamond, mentors)

 The VEX Radiation Module: 2D Radiation Transport with Mimetic
Diffusion for EXAFLAG

233

Elizabeth Lovegrove and Devon Powell

 Verification Problems for Rad-Hydro (Scott Ramsey, mentor)

 Verification Problems for xRAGE Radiative Hydrodynamics Code

252
Elizabeth Hanson and Joseph Redford

 Material Interfaces in Rad-Hydro Calculations (Todd Urbatsch and
Scott Runnels, mentors)

 Using High-Fidelity Radiation Transport Methods to Supplement the
Diffusion Approximation at Material Interfaces

290

Daniel E. Ruiz and Laurie A. Stephey

 Fission-Fragment Charge Yield Distribution Calculations (Peter
Moller, mentor)

 Accelerating a Metropolis Random Walk and Immersion-Method Saddle-
Point Algorithms in Multidimensional Nuclear Potential-Energy Spaces

323

Justin Willmert and Kemper Talley

Diffusion in Mixed Cells (William Dai, mentor)

 Numerical Study for Diffusion in Material Mixtures Part I: Pure Materials

347
Isaac J. Yeaton

 Numerical Study for Diffusion in Material Mixtures: The Treatment of
Mixed Material Cells

363

T. Maximillian Roberts

 Turbulence Modeling (Dan Israel and John Schwarzkopf, mentors)

 BHR Equations with Immiscible Effects: Preliminary Work

378
Jeremy A. Horwitz, John D. Schwarzkopf

 Modeling Kelvin-Helmholtz and Rayleigh-Taylor driven Mixing Layers
using the BHR model
Sasha Tan-Torres

421

2013 Computational Physics Student Summer Workshop: Final Reports

Background

Philosophy of the Workshop

The two primary purposes of LANL’s Computational Physics Student Summer Workshop are (1)
To educate graduate and exceptional undergraduate students in the challenges and
applications of computational physics of interest to LANL, and (2) Entice their interest toward
those challenges. Computational physics is emerging as a discipline in its own right, combining
expertise in mathematics, physics, and computer science. The mathematical aspects focus on
numerical methods for solving equations on the computer as well as developing test problems
with analytical solutions. The physics aspects are very broad, ranging from low-temperature
material modeling to extremely high temperature plasma physics, radiation transport and
neutron transport. The computer science issues are concerned with matching numerical
algorithms to emerging architectures and maintaining the quality of extremely large codes built
to achieve multi-physics calculations. Although graduate programs associated with
computational physics are emerging, it is apparent that the pool of U.S. citizens in this multi-
disciplinary field is relatively small and is typically not focused on the aspects that are of primary
interest to LANL. Furthermore, more structured foundations for LANL interaction with
universities in computational physics is needed; currently interactions rely almost solely on
individuals’ personalities and personal contacts. Thus a tertiary purpose of the Summer
Workshop is to build an educational network of LANL researchers, university professors, and
emerging students to advance the field and LANL’s involvement in it.

This was the third year for the Summer Workshop. Like the previous years, the workshop’s
goals were achieved by bringing into LANL a select group of students recruited from across the
United States and immersing them for ten weeks in lectures and interesting research projects.
The lectures provided an overview of the computational physics topics of interest this year along
with some detailed instruction while the projects gave the students a positive experience
accomplishing technical goals. Each team consisted of two students working under one or
more mentors from LANL on specific research projects associated with predefined topics. This
year, the topics were algorithms for shock hydrodynamics, plasma mixing in ICF applications, 3-
T plasma physics, new algorithms for GPUs, MCNP Monte Carlo, X-ray Thomson scattering of
warm dense matter, unstructured mesh algorithms for multi-core/GPU computers, verification
problems for rad-hydro, material interfaces in rad-hydro, fission-fragment charge yield
distribution calculations, diffusion in mixed cells, and turbulence modeling.

The students’ growth was furthered by their participation on teams where their teammates were
sometimes of different academic rank. It also developed their skills by requiring them to
produce written and oral reports that they presented to peers, mentors, and management.

2013 Computational Physics Student Summer Workshop: Final Reports

Funding and Participation Profile

LANL Staff

The Advanced Scientific Computing (ASC) Program at Los Alamos National Laboratory, under
charge code JPDJ, sponsors the Summer Workshop by funding the workshop coordinator,
paying for the lease at the University of New Mexico – Los Alamos campus, and also funding six
of the twenty-four students. The remaining eighteen students were funded by various projects
(some of them under ASC and some not), as shown below. This year, there were fifteen
mentors, up from nine the previous year. The participation amongst different divisions grew
again this year, including mentors from XCP, XTD, T, CCS, and HPC. This broad participation
is welcome and it is hoped that it continues in future years. The details of the funding and
divisional participation are summarized below.

Charge
Code

Mentor

Home Division

Topic

JA1F Brown
XCP Eigenfunction Decomposition of Reactor Perturbations and Transitions

Using MCNP Monte Carlo
JADD Dai HPC Diffusion in Mixed Cells

JA2K Fung/Kenamond
XCP The VEX Radiation Module: 2D Radiation Transport with Mimetic Diffusion

for ExaFLAG
J444 Israel/Schwarzkopf XCP/XTD Turbulence modeling
JA2P Masser CCS Improved Time Step Controller for xRage

JPDJ Moller
T Accelerating a Metropolois Random Walk and Immersion-Method Saddle-

Point Algorithms
JPDJ Morgan XCP One Dimensional Lagrangian Hydrocode Development
JA4B Ramsey XCP Verification Problems for xRAGE Radiative Hydrodynamics Code
JA2J Robey XCP New Algorithms for GPUs
JAUE Saumon XCP Modeling X-ray Thomson scattering spectra of warm dense matter

JW61 Urbatsch/Runnels
XTD/XCP Using High-Fidelity Radiation Transport Methods to Supplement the

Diffusion Approximation at Material Interfaces
JPDJ Vold XCP Plasma mixing in ICF applications

Students

Seventy-two students applied for admission to the workshop, all eligible U.S. citizens with the
breakdown shown in the chart that follows. The twenty-four that ultimately were selected and
participated were from the following schools: Arizona State, BYU, Stanford University, University
of Minnesota, Virginia Tech, UC Santa Cruz, University of New Mexico, Columbia, University of
Illinois Urbana-Champaign, University of Tennessee Knoxville, MIT, University of Wisconsin,
University of Oregon, Princeton, Florida State, University of Michigan, Indiana University. Their
rank breakdown is also shown in the chart below.

2013 Computational Physics Student Summer Workshop: Final Reports

Chart showing the academic rank breakdown of the applicant pool and the ultimate
participants. “UG1” means freshman, “UG2” means sophomore, etc., while “G1” means
“1st year graduate student,” “G2” means “2nd year graduate student,” etc.

Lectures

The workshop coordinator and participating students greatly appreciated the contributions made
by several lecturers, including some from outside LANL. The lectures were scheduled so the
students could obtain the most benefit from them. Specifically, they were most frequent in the
beginning of the workshop, when the students’ research was just getting started and they
needed the most background information. Then, their frequency dropped significantly until,
finally, there were no lectures towards the end so the students could focus on their research
without interruption.

The Summer Workshop strives to balance lectures with projects. With the growth in the number
of mentors, students, and topics, it became necessary this year to introduce the concept of
mandatory lectures versus optional lectures. The mandatory lectures are considered core to the
program and part of the essential educational experience, while the optional lectures are
designed more for the students focusing on that research topic. In 2012, there were
approximately 42 hours of lectures provided, with the implicit understanding that they were all
mandatory. This year, the mandatory lectures were reduced to 34 hours, but an additional 24
hours of optional, more in-depth lectures were given. In general, attendance at the optional
lectures was strong.

The lectures are summarized on the next page.

0

2

4

6

8

10

12

14

16

18

UG1 UG2 UG3 UG4 G1 G2 G3 G4 G5 G6 G7

Applied

Accepted and
Participated

2013 Computational Physics Student Summer Workshop: Final Reports

Lectures – Required Attendance

Name Affiliation Topic Length in

hours
Scott Runnels LANL Intro. to Hydro Terminology 2

Intro. to Grid Data Structures 1
Erik Vold LANL Basic Issues in Transport/CFD 1

ICF Plasma Diffusion/Fluid Modeling 1
Nathaniel Morgan LANL Intro. to Lagrange Hydro 1

Lagrange SGH in r-z 1
Intro. to ALE 1
Intro. to CCH Hydro 1
Intro to FE PCH 1

Bob Robey LANL Parallel Programming 2
John Schwarzkopf LANL Turbulence 1
Dan Israel LANL Turbulence 1
Peter Moller LANL Essential Structures on Discrete Grids 1
Forrest Brown LANL Monte Carlo Foundations 3

Basic Monte Carlo Techniques 2
William Dai LANL Diffusion/Mix Methods 1
Jim Kamm and Greg
Weirs

Sandia VVUQ 3

Malaya/Schultz UT-Austin Intro to Software Engineering 1
Intro to MMS 1

Scott Ramsey LANL Test Problems 1
John Wallin MTSU Astrophysical Motions 1

Simulation/Image Data Comparison 1
Mack Kenamond LANL Slidelines 1
Jimmy Fung LANL Mimetic Diffusion Solvers 1
Didier Saumon LANL Intro EOS Physics 1
Bill Rider LANL History/Codes 2

Lectures – Optional Attendance

Name Affiliation Topic Length in

hours
Scott Runnels LANL Intro. to Artificial Viscosity 1
Rob Cunningham LANL High-Performance Computing at LANL 2
Dan Israel LANL Turbulence Modeling 1
Peter Moller LANL Nuclear Masses/Fission Properties 1

Nuclear Masses/Fission Properties 1
Forrest Brown LANL Basic Monte Carlo Techniques 1

Monte Carlo Advanced Topics 1
MCNP Tutorial 6

Brian Kiedrowski LANL Monte Carlo Advanced Topics 1
Chacon LANL PIC Algorithm 1
Nick Malaya and
Karl Schultz

UT-Austin MASA – A package for manufactured
solutions verification

3

Scott Ramsey LANL Verification in Practice 1
Bill Rider Sandia Hydro Methods 2
Masser LANL PDE Verification 2

2013 Computational Physics Student Summer Workshop: Final Reports

Survey Results

Twenty-two of the twenty-four workshop students participated in an anonymous survey during
the final week of the workshop. They were asked to respond to the thirty-two assertions, below,
using the response “Strongly Disagree”, “Disagree”, “Neutral”, “Agree”, or “Strongly Agree.” In
general, responses were very positive and appreciative. Detailed results are provided on the
pages that follow.

Lectures

(1) Overall, the lecture quality was very
good.
(2) There were some lectures that were
exceptionally good.
(3) There were some lectures that need
improvement.
(4) The overall scope of the lecture series
was appropriate.
(4) I wished the series followed a more
logical order.

Facilities

(1) I liked the room I was in.
(2) My chair was comfortable.
(3) My desk was comfortable.
(4) The noise level was acceptable.
(5) The temperature was about right.
(6) Access to the facilities was good
enough.

Computing

(1) Moonlight was effective for me.
(2) The Sunrays were effective for me.
(3) I felt it easier just to use my own laptop.
(4) I used a combination of my laptop and
LANL's computers.

LANL

(1) The workshop gave me a positive
impression of LANL.
(2) I felt the workshop was indicative of life
at LANL.
(3) I think LANL would be a good place to
work.

Mentors

(1) My mentor spent enough time with me.
(2) My mentor did a good job in scoping out
my project.
(3) My mentor worked hard to make me
successful.
(4) My mentor was knowledgeable in the
technical area.
(5) My mentor treated me with respect.
(6) My mentor served as a good example
for me to follow.

Organizer

(1) The pre-on-boarding process worked
really well for me.
(2) The workshop seemed very well
organized.
(3) I felt comfortable socially and
professionally.
(4) Scott Runnels was approachable.
(5) Scott Runnels was helpful.
(6) I understood what it meant to be a
fellowship student.
(7) I felt the workshop benefitted me
academically.
(8) The workshop has influenced my career
in a positive way.
(9) I would recommend the workshop to a
friend.

2013 Computational Physics Student Summer Workshop: Final Reports

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Overall, the
lecture quality
was very good.

There were
some lectures

that were
exceptionally

good.

There were
some lectures

that need
improvement.

The overall
scope of the
lecture series

was
appropriate.

I wished the
series followed
a more logical

order.

Strongly Disagree

Disagree

Neutral

Agree

Strongly Agree

0%

10%

20%

30%

40%

50%

60%

70%

I liked the
room I was

in.

My chair was
comfortable.

My desk was
comfortable.

The noise
level was

acceptable.

The
temperature

was about
right.

Access to the
facilities was

good
enough.

Strongly Disagree

Disagree

Neutral

Agree

Strongly Agree

2013 Computational Physics Student Summer Workshop: Final Reports

0%

10%

20%

30%

40%

50%

60%

Moonlight was
effective for me.

The Sunrays were
effective for me.

I felt it easier just to
use my own laptop.

I used a
combination of my
laptop and LANL's

computers.

Strongly Disagree

Disagree

Neutral

Agree

Strongly Agree

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Strongly Disagree

Disagree

Neutral

Agree

Strongly Agree

2013 Computational Physics Student Summer Workshop: Final Reports

0%

20%

40%

60%

80%

100%

120%

Strongly Disagree

Disagree

Neutral

Agree

Strongly Agree

0%

10%

20%

30%

40%

50%

60%

The workshop gave me a
positive impression of

LANL.

I felt the workshop was
indicative of life at LANL.

I think LANL would be a
good place to work.

Strongly Disagree

Disagree

Neutral

Agree

Strongly Agree

2013 Computational Physics Student Summer Workshop: Final Reports

Student Reports

The reports that follow are assembled from separate PDF files. The table of contents at the
beginning of this document uses page numbers in this fully assembled PDF file. In other words,
it is recommended that the reader use the page indicator in the PDF viewer as the page number
when navigating this combined document.

2013 Computational Physics Student Summer Workshop: Final Reports

One Dimensional Lagrangian
Hydrocode Development

(Nathaniel Morgan, mentor)

LA-UR-13-26506
Approved for public release; distribution is unlimited.

Title: One Dimensional Lagrangian Hydrocode Development

Author(s): Esmond, Micah J.
Thurber, Andrew J.

Intended for: 2013 Computational Physics Summer Student Workshop,
2013-06-10/2013-08-16 (Los Alamos, New Mexico, United States)

Issued: 2013-08-16

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National
Security, LLC for the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.
By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to
publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.
Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the
U.S. Departmentof Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish;
as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

2013 Computational Physics Workshop
Los Alamos National Laboratory

One Dimensional Lagrangian
Hydrocode Development

Micah Esmond

Department of Mechanical Engineering
Virginia Tech

jemicah2@vt.edu

Andrew Thurber
Department of Mechanical Engineering

Virginia Tech
ajthurbe@vt.edu

Mentor:

Dr. Nathaniel Morgan
XCP-8: Verification and Analysis
Los Alamos National Laboratory

nmorgan@lanl.gov

August 16th, 2013

1

mailto:nmorgan@lanl.gov
mailto:jemicah2@vt.edu
mailto:ajthurbe@vt.edu

Table of Contents
Introduction..3
Code Details...3

Source Code Files..4
Input...5

CCH Description..7
Cartesian Coordinates..7
Cylindrical Coordinates...8
Spherical Coordinates..9
Boundary Conditions...10

SGH Description..11
Curvilinear Coordinates..12
Boundary Conditions...12

PCH Description..13
Curvilinear Coordinates..15
Boundary Conditions...15

Solver Details...16
Riemann Solution..16
Time Integration..17
Time Step Control...18

PCH Method Comparison..19
Smoothing...20
Space and Time Averaged...22
PCH Comparison to PCHA...26
MPC Comparison to CCH...27

Convergence Analysis..28
Test Problems...30

Sod Problem..30
Piston Problem..32
Noh..34
Sedov...40

Conclusions..44
Future Work..44

Curvilinear Coordinates..44
Second Order Scheme...44

References..47
Appendix..48

2

Introduction
Arbitrary Lagrangian Eulerian (ALE) codes combine the Lagrangian and Eulerian techniques.

The Lagrangian approach is used to evolve the mesh, and the Eulerian approach is used to remap
physical quantities after the mesh has been relaxed. This project focuses on the development of a 1D
Lagrangian code as a testbed for ALE techniques; various hydrodynamic methods can be compared
within a single framework. Remapping and ALE have not yet been implemented, and the code remains
fully Lagrangian. The development and use of this code will aid in the understanding of the
mathematics behind these types of algorithms.

Code Details
The code requires user inputs stored in a text file that is called by the input function in the code.

Having a separate text file containing user inputs allows for the inputs to be changed easily and
eliminates the need to compile the code after a slight change in the inputs. The use of a separate text
file for inputs also requires the development of a parser. The parser used in this code was developed
with the help of Dr. Vincent Chiravalle. The parser reads in the input text file and separates each word,
variable, and value and then stores them in an array of strings. The input function then queries the
array and extracts user-defined values and assigns them to the simulation parameters. These simulation
parameters include mesh density, domain length, boundary conditions, thermodynamic quantities, and
output options.

Once the simulation parameters defined by the user are collected, the initialize function in the
code uses them to populate 1D arrays that will be used in the simulation. The code utilizes these arrays
to represent the spatial distributions of thermodynamic quantities. The arrays can represent multiple
materials. For the simulations of interest in this project, the property that differentiates materials is the
ratio of the specific heats, i.e. gamma. Each element in an array represents an individual control
volume containing a single material. Once ALE is implemented in the code, individual elements will
have to represent multiple materials because of remapping procedures. This will be done using
dynamic link lists.

The physics of the simulations are carried out in separate functions called “CCH”, “PCH”,
“MPC”, “SGH”. These functions contain the Runge-Kutta time integration steps which include the
majority of the calculations involving the conservation equations and the equation of state. At the end
of these functions, the maximum speed of sound in the computational domain is computed. This value
is fed back into the main function to compute the next time step. The main function serves to calculate
the next time step and print out current simulation information including the current time, time step,
and the minimum Δx across the domain.

At user-specified time intervals, the output function records the spatial distributions of
thermodynamic quantities in data files. The data files are named using the name of the input file with
the time information appended to it. Output files are generated for both point and cell arrays. These
data files can then be plotted using third party plotting software such as GNUplot.

3

Source Code Files
The source code files are presented and described in Table 1.

Table 1. Source code file names and descriptions.

Source code
file name

Description

program.c Contains the main function as well as optimization functions used for the computations.
The main function calls the subsequent functions and organizes their respective inputs
and outputs. The main function also calculates the next time steps to input into the
hydro packages.

header.h Spacial arrays and other simulation parameters are declared in this file in order to be
used globally. This file is included in each of the source code files.

setDefaults.c Contains the function that establishes simulation parameters to be used if the user does
not include them in the input file. It provides additional robustness to minimize user
frustration.

input.c Contains the function that parses the user input file and saves to variables for further
use. If inputs are omitted, the default values are used.

initialize.c Contains the function allocates memory and defines arrays and variables included in
header.h, based on values from the user input file.

CCH.c Contains the cell-centered hydrodynamics function. This funtion calls a separate
function that performs a Riemann solution and steps the simulation parameters forward
in time. Separate volume and area have also been included. See CCH Description.

PCH.c Contains the point-centered hydrodynamics function. This function is used for the
PCH and PCHA methods. It includes various functions for the Riemann solution and
the time integration. It also contains a functions that compute a volumes and areas.
See PCH Description and PCH Method Comparison.

SGH.c Contains the staggered-grid hydrodynamics code. There is also a separate function that
performs a Riemann solution and steps the simulation parameters forward in time.
Volumes and areas are also computed in separate functions. See SGH Description.

MPC.c Contains the modified point-centered hydrodynamics code. This function also calls a
separate function that performs a Riemann solution. Volumes and areas are also
computed in separate functions.

output.c Contains a function that generates output files at specific time intervals defined by the
user. This time interval is referred to as dtdump. Values for relevant properties such as
density, pressure, etc. are output at each point or cell location, depending on the hydro
method selected by the user.

4

Each source code file includes the header.h file. When the source code is compiled using the makefile,
an executable file named code is created. The executable file is run with an input file using the
following syntax:

./code ExampleInput.inp

The flowchart in Figure 1 details the overall procedure of the 1D hydrocode.

Input
The user provides inputs to the hydrocode using a separate text file. If the user omits any

inputs, default values will be used in their place. A list of the available user inputs along with the
default values is shown in Table 2.

5

Figure 1. Flowchart of code structure.

Table 2. User inputs and default values.

Input Default
Value

Comments

General Inputs

mats 2 Number of Materials

np 20 Number of points used in the simulation

L 10 Length of domain (this is also the radius in curvilinear coordinates)

init-ie? 0 Initializes the simulation using specified internal energy (1) or pressure (0)

init_from_cell 0 Initializes point values based on the user inputs (0) or on cell values (1). Use (1)
to smooth the shock front.

BC1 0 Fixed (0), Free (1)

BC2 0 Fixed (0), Free (1)

BCu1 0 Fixed wall velocity

BCu2 0 Fixed wall velocity

Method CCH

VelOpt 0 Computes density and total energy change from averaged point velocities (0) or
from Riemann velocities (1)

AvgOpt 0 Averages the nodal velocities in space (0) or in space and time (1)

NodePosOpt 0 Updates the nodal positions based on the nodal velocities (0) or the averaged
control volume boundary positions (1)

Coordinate_System car Planar (car), Cylindrical (cyl), Spherical (sph)

Material Inputs

u 0 Initial velocity of each material

p 1.0 and 0.1 Initial pressures of material 1 and material 2, respectively

rho 1.0 and 0.1 Initial densities of material 1 and material 2, respectively

ie 1.0 and 0.1 Initial specific internal energies of material 1 and material 2, respectively

x1 0.0 and 5.0 Start locations of material 1 and material 2, respectively

x2 5.0 and 10.0 End locations of material 1 and material 2, respectively

gamma 1.4 Gamma of each material

I/O Parameters

dt0 1e-9 Initial time step

tstop 30.0 Stop time

dtdump 5.0 Time interval to write output files

CFL 0.5 CFL parameter for time step control

CFLV 0.01 CFLV parameter for time step control

It is important to note that the materials must be entered in the order they appear in the domain from
left to right. The 1D hydrocode assumes a consistent set of units. A typical system of units used for
these problems is cm (length), μs (time), megabar (pressure), cc (volume), g (mass), megabar cc/g
(specific energy).

6

CCH Description
Cartesian Coordinates

In CCH, all parameter values are stored at the cell's center. A Riemann-like solution is used to
determine the velocity and pressure at the interface between cells, called points or nodes. See Figure 2.

For 1D, the CCH method uses the following governing equations. The continuous equations are on the
right, and the discretized approximations are shown on the right.

Continuous 1D Discrete

where M is the mass, V is the volume, u is the velocity, P is the pressure, j is the specific total energy,
and n is the surface normal vector that points in either the positive or negative direction in 1D. The
superscript * indicates the Riemann solution which is discussed in a later section. The subscript z
indicates a zone or cell centered quantity. The superscript n+1/2 indicates the time integration scheme.

7

Figure 2. CCH mesh.

- Interface (point) - Cell or Zone Center

Control Volume

The time integration scheme is discussed in more detail in a later section. In 1D, the change in the x-
location of the points is used to compute the change in volume. The change in the x-location of a point
is determined by

The density is updated using the volume change. The internal energy is determined using the equation

where ez is the specific internal energy in the zone. Using the updated density and the internal energy,
the pressure is updated using the equation of state for a gamma-law gas. A constant gamma is assumed.
P is given by

Cylindrical Coordinates
For cylindrical coordinates in 1D, the same governing equations are used as in Cartesian

coordinates. The difference is in the volume and area calculations. The volume is computed as the
volume per radian and is given by

where dz, the depth of the cylinder, is understood to be of unit length. The area that is used to compute
the forces on the individual control volumes is computed in order to preserve consistency with the
divergence relationship. The divergence relationship is

The right side can be expressed as

simplifying, one obtains

\frac{1}{V_z}\frac{\delta V_z}{\delta t}=\frac{1}{V_z} \left [\frac{\delta V_z}{\delta r_{p+1}}\frac{\delta r_{p+1}}{\delta t}+\frac{\delta V_z}{\delta r_p} \frac{\delta r_p}{\delta t} \right]= \frac{1}{\frac{1}{2}(r_{p+1}^2-r_p^2)}\left [r_{p+1}u_{p+1}-r_pu_p \right]

8

Simplifying again yields

and

Therefore, using the average radius at a control volume to determine the area will be consistent with the
divergence relationship. The area per radian used to determine the forces acting on the cell is given by

where dz is understood to be of unit length.

Spherical Coordinates
For spherical coordinates in 1D, the same governing equations are used as in Cartesian

coordinates. However, the volume and area calculations are different. The volume is computed as the
volume per steradian and is given by

The area used to compute the forces acting on the individual control volumes is computed in order to
preserve consistency with the divergence relationship presented in the previous section. Similar to the
derivation in the previous section, it can be shown that

Simplifying yields

\frac{1}{V_z}\frac{\delta V_z}{\delta t}= \frac{1}{\frac{1}{3}(r_{p+1}^2+r_{p+1}r_p+r_p^2)}\frac{\left [r_{p+1}^2\:u_{p+1}-r_p^2\:u_p \right]}{r_{p+1}-r_p}

and

9

From this derivation, the area per steradian is given by

Boundary Conditions
Two different types of boundary conditions are available in the code. The first is a fixed or

reflective boundary, the second is a free boundary condition. The details of the mathematics used to
simulate these conditions are presented below

CCH: Fixed (Reflective) Boundary Condition

For a fixed boundary, the velocity at the boundary is set to a specific value set by the user.
Figure 3 illustrates mesh at the boundary.

The fixed velocity at the boundary is u*
p. The pressure at the boundary is determined by the equation

where n is the normal vector pointing in the positive or negative direction. μ at the boundary cell can
be approximated by

where the density and the speed of sound are evaluated at the boundary cell. Also, for a first order
approximation,

Once the pressure and velocity at the boundary are known, the governing equations for the boundary

10

Figure 3. CCH boundary mesh.

End of Domain
(Boundary)

cell can be implemented normally.

CCH: Free Boundary Condition

For a free boundary condition, the pressure at the boundary must be maintained at zero. The
velocity at the boundary must be determined. By manipulating the equation for P* in the previous
section, the following equation is obtained.

Where the approximations used for μ and the projected velocity and pressure are the same as for the
fixed boundary condition.

SGH Description
In the SGH approach, the pressure, internal energy, and density are stored at the cell center. The

velocity is stored at the points. The momentum and energy equations are solved on two separate
control volumes. See Figure 4.

The momentum control volume is designated MCV, and the energy control volume is designated ECV.
The discrete Lagrangian governing equations for SGH are shown below on the right and the continuous
equations are shown on the left.

11

Figure 4. SGH mesh.

Energy CVMomentum CV

P, e, ρ u

Continuous 1D Discrete

M_z\frac{\Delta e_z}{\Delta t}=-P_z^{*(n+\frac{1}{2})}\sum_{ECV} \left (\mathbf{n}A\: u_p\right)^{n+\frac{1}{2}}

where Mp is the mass of the MCV centered at a point, and Mz is the mass of the ECV at a cell. ez is the
specific internal energy. The volume and density of the cell are updated based on the change in the
locations of the points. The location of the points is updated using a time averaged velocity as in the
equation.

A pressure is computed using the equation of state for a gamma-law gas where a constant gamma is
assumed.

A Riemann-like problem is solved at the center of the each cell. In 1D, the velocities are projected
from the points to the cell centers. The pressure stored at the cell center is the pressure used to
determine u* and P*.

Curvilinear Coordinates
The equations implemented for curvilinear coordinates in SGH are derived similarly to those

used for CCH. However, the area used in the momentum equation is evaluated at the center of the
momentum control volume. This same area is then used in the energy equation. A predictor-corrector
scheme was implemented in SGH. This procedure is explained in [1]. First, the nodal positions are
estimated at the next time step using a time averaged velocity. The velocity is then updated using the
areas computed from the predicted nodal positions. New nodal positions are then computed using the
updated velocity and these values are compared to the predictions. The process is repeated until the
difference in the predicted and computed nodal positions is negligible.

Boundary Conditions

SGH: Fixed (Reflective) Boundary Condition

The SGH approach utilizes a momentum control volume centered on the points and an energy
control volume centered on the cells. To simulate a fixed boundary condition, the change in the
velocity with respect to time for the boundary node is set to zero. To illustrate this concept, a
customized momentum control volume is established for the boundary node as shown in Figure 5.

12

For the momentum control volume at the boundary, the pressure on the right side must be equal to the
pressure on the left side. Therefore, the change in velocity with respect to time for the boundary node
must be zero to satisfy the governing equation

SGH: Free Boundary Condition

The free boundary condition for SGH is simulated by using the momentum control volume at
the boundary and setting the pressure at the boundary node equal to zero. The rate of change of the
velocity at the boundary node is then given by

PCH Description
Using a point centered approach (PCH), pressure, energy, density, and velocity are stored at the

points and each control volume is centered on a point. The Riemann-like solution is used to compute a
P* and u* at the interfaces between the control volumes as shown in Figure 6.

13

Figure 5. SGH boundary mesh.

Energy CVMomentum CV

Momentum CV at
the boundary

i i+1z z+1

In 1D, the governing conservation equations reduce to following discretized forms:

where Mp is the point centered mass and

The internal energy is computed by subtracting the kinetic energy from the total energy, and the
pressure is computed using the equation of state for a gamma-law gas assuming a constant gamma. For
PCH, three different methods were used to update the density of each control volume. The governing
equations presented in this section represent the first method used. Details regarding the other methods
are presented in a later section.

14

Figure 6. PCH mesh.

Control Volume

z p+1pz-1 z+1

P ρP

ue

P*

u
avgu*

Curvilinear Coordinates
The equations used to compute volumes and areas in PCH are similar to those used in CCH.

The differences are that the volume is computed for the point centered control volumes rather than the
cell centered control volumes, and that the areas are computed at the nodes rather than at the cell
centers.

Boundary Conditions
At the boundaries, a control volume is not centered on a point, as it cannot extent past the

domain, as seen below. The governing equations are then applied to a control volume that is typically
half the size of an ordinary control volume in the domain. Figure 7 illustrates the PCH mesh at the
boundary.

PCH: Fixed BC

The fixed boundary is subject to the following conditions:

\left. \frac{\Delta j}{\Delta t} \right |_{wall}=\frac{1}{M_p}\sum_{CV} F^*u=\frac{1}{M_p}\left [\left (\left. F^* u_{wall} \right)\right |_{wall}+\left. \left (F^*u_{avg} \right) \right |_z \right]

where Mp is the mass of the control volume at the boundary and

u_{avg}=\frac {u_{wall}+u_{p}}{2}

15

Figure 7. PCH boundary mesh.

End of Domain
(Boundary)

zwall
(edge)

p

\left. F^* \right |_{wall}=\left. -F^* \right |_z

The wall velocity, uwall, is fixed. The magnitude of the forces on either side of the boundary control
volume are assumed to be equal as the gradient of the pressure is set to zero for this condition.

PCH: Free BC

For a free boundary condition, the edge velocity is not fixed. The free boundary is subject to the
following conditions:

\left. \frac {\Delta x}{\Delta t}\right |_{edge}=\left. u \right |_{edge}

\left. \frac {\Delta u}{\Delta t} \right |_{edge}=\frac {1}{M_p}\sum_{CV}F^*=\frac{1}{M_p}F^*_z

\left. \frac{\Delta j}{\Delta t} \right |_{edge}=\frac{1}{M_p}\sum_{CV} F^*u=\frac{1}{M_p}\left F^*_z u_{avg}

where

u_{avg}=\frac {u_{edge}+u_{p}}{2}

The three different point centered methods discussed in this report vary slightly in the implementation
of boundary conditions. For example, uavg in the energy equation above is replaced by the zone-
centered Riemann velocity, u*.

Solver Details
Riemann Solution

As presented in [2], a linear relationship between the shock velocity and the material velocity
(the U-u curve) can be a good approximation for many materials. This simplifies the Riemann
solution. As pointed out in [3], the Riemann-like solution can be used to determine a viscous force
acting on the material experiencing a shock. The Riemann-like solution solves the shock problem
across the interface between two cells. This solution simulates the dissipation effects that characterize
a shock. In 1D, the Riemann-like solution yields a velocity and pressure at the cell interface that are
given by

16

Where Pc and uc are the projected values, and μ is the shock impedance. The + and – superscripts
denote the positions of the quantities relative to the interface of interest. For simplicity, a first order
projection is used for the velocity and pressure. In CCH, these values are projected from the zone
center to the points. In SGH, the velocities are projected from the points to the zone center. The shock
impedance is determined based on the linear approximation of U-u curve. For a gamma law gas, the
slope of of the shock impedance relation can be approximated by [4]. Therefore, the shock

impedance is computed by

where c is the acoustic wave speed. For a gamma-law gas, the acoustic wave speed is approximated by

Time Integration
The code uses a fourth order, explicit Runge-Kutta time integration scheme. The Taylor series

expansion of any function is

If the higher order terms are neglected, the above equation can be represented by

The code uses the quantities at “n” to compute a slope and step the quantities forward to “n+1/4”. The
code then uses the quantities at “n+1/4” to compute a new slope and step the quantities forward from
”n” to “n+1/3”. This process is repeated until the quantities are stepped forward from “n” to “n+1”. At

17

each of these stages, a Riemann-like problem is solved at the control volume interfaces, and all the
simulation parameters are stepped forward in time.

Time Step Control
Two methods are used in order to control the time step during the simulation. The first method

is the Courant Stability Condition. The Courant stability condition requires that

where u is the maximum speed of the fluid in the domain. The CFL parameter is chosen by the user.
For explicit schemes, CFL must be less than or equal to 1. The maximum speed of sound, cmax, can be
used in the place of the maximum speed of the fluid in the domain. cmax is used with the minimum Δx
of a cell in the domain to calculate a new time step. The code calculates a new time step before each
iteration by applying the formula

The user can set an initial time step in the input file. The code allows the time step to grow by a
maximum of 10% at each step.

The second method restricts the volume change of a cell in a single time step. The requirement
is expressed by

CFLV\geq\frac{V^{n+1}-V^n}{V^n}

where V is the volume, and CFLV is a parameter set by the user. By restricting the volume change,
other parameters, such as the density and pressure, are allowed to develop in the cell before the cell
collapses and yields unphysical results. This adds stability to the computations. The fundamental
formula is the divergence relationship.

In 1D, the finite difference form of this equation can be expressed as

\frac{\Delta V}{\Delta t}=\frac {V^{n+1}-V^n}{\Delta t}=\frac {\Delta u}{\Delta x} V^n

By rearranging and substituting, the following formula gives a suitable time step.

18

The hydrocode uses a CFLV parameter set by the user and finds the maximum velocity gradient in the
domain. A new time step is then calculated using these values.

The time step used in the next calculation is the minimum of the time steps computed using
these two methods.

PCH Method Comparison
The PCH method that was implemented in the code had difficulties on test problems with strong

shocks, such as the Sod problem. As a results, a variety of PCH methods were explored. The first
method is the canonical PCH method (PCH). In 1D, it was found that this method allowed the collapse
of zones at shock discontinuities. The collapse of a cell causes the time step to approach zero and
prevents the simulation from reaching the required time. It was found that by “smoothing” the shock
interface initially eliminates the cell collapse issues. The smoothing was accomplished by averaging
the thermodynamic quantities at the discontinuity. A second method seeks to solve the issue by
updating the volume of each control volume using the averaged velocities at the control volume
boundaries. This method is denoted by PCHA. This method allows the simulation to complete but
does not update the nodal positions directly from the nodal velocities. Rather, the method updates the
control volume boundaries and moves the nodal positions based on the new control volume boundaries.
A third method uses the Riemann velocities at the control volume boundaries to calculate the density
and total energy change. This method is denoted by MPC. This method is effectively identical to the
CCH method, only shifted by half of a cell. The equations for each method are presented below.

PCH PCHA MPC

where the area used to compute the volume is understood to be equal to 1 in planar coordinates. uavg is
the average of the neighboring nodal velocities. The procedures used to compute the volume change in
PCH and PCHA are algebraically equivalent. The difference is that, in PCHA, the control volume
boundary locations are updated using the averaged nodal velocities. These values are then used to

19

update the nodal positions after the time integration is complete. In PCH, the nodal positions are
updated throughout the time integration using the nodal velocities.

Smoothing
In the Sod problem, the PCH method moves the individual points too quickly and causes the

cell ahead of the shock discontinuity to collapse. This causes the time step to approach zero because
the maximum allowable time step is based on the distance between individual points. One strategy to
prevent this from happening is to smooth the shock discontinuity. This technique smooths out the
shock interface by placing a point directly between the high and low density regions of Sod problem
and assigns to the point the average of the two densities. The same technique is applied to the initial
pressure and energy distributions. Figure 8 illustrates this technique.

This technique allows the simulation to run past 20 µs. The simulation results at 20 µs are compared to
the analytical solution in Figure 9.

20

Figure 8. PCH: Smoothing technique concept.

The smoothing technique allows the simulation to run up to 41.72 µs. The results for pressure at this
time are shown in Figure 10.

21

Figure 9. PCH Results for the Sod problem at 20 μs with smoothing applied.

At 41.72 µs, the shock has been reflected off of the boundary at 100 cm and has begun to move to the
left. A new shock interface has formed, observed in the figure above at approximately 90 cm. This
new interface has not been smoothed since no algorithm to automatically smooth shocks has been
implemented. Therefore, the points move too close together and the time step approaches zero which
stops the simulation.

Space and Time Averaged
For the PCHA method, the control volume boundaries are moved using the averaged nodal

velocities. Two different approaches were investigated for this method. The first approach averages
the nodal velocities in space, and the second approach averages the nodal velocity in space and time.
For the second approach the governing equations for the control volume boundaries, volume, and total
energy become

\frac{\Delta x_z}{\Delta t}=\left. u_{avg} \right |_z^{k+ \frac{1}{2}}

\frac{\Delta V_p}{\Delta t}=\sum_{CV} \mathbf{n} \cdot \left. u_{avg} \right |_z^{k+ \frac{1}{2}}

22

Figure 10. Maximum extent of PCH simulation with smoothing applied
for the Sod problem.

\frac{\Delta j_p}{\Delta t}=\frac{1}{M_p}\sum_{CV}\left. F^*_z u_{avg} \right |_z^{k+\frac{1}{2}}

where

\left. u_{avg} \right |_z^{k+ \frac{1}{2}}=\frac{1}{2} \left (\frac{u_p^{n}+u_{p}^{k+1}}{2}+\frac{u_{p+1}^{n}+u_{p+1}^{k+1}}{2} \right)

The different averaging approaches have little to no effect on the results. The results from a simulation
using 100 zones and both averaging methods are compared to the analytical solution for the Sod
problem at 20 μs in Figure 11.

23

Figure 11. Comparison of results for the Sod problem. The PCHA simulation was run using the time averaged
velocities as well as the time and spacial averaged velocities.

The approach used to calculate the average velocity, whether a space or a both space and time averaged
velocity, does not change the results of the 1D simulation significantly. Even as the mesh is refined,
there is no noticeable difference in the plotted results. For both approaches with 100 zones, a
numerical ringing is produced at the contact discontinuity, located between 50 and 75 cm in Figure 11.
The PCHA method used in the remainder of this report utilizes spatially averaged velocities. The effect
of mesh refinement on the ringing is shown in Figure 12.

24

25

Figure 12. Effect of mesh refinement on the numerical ringing observed in the PCHA method.

PCH Comparison to PCHA
The PCH method experiences cell collapse for the Sod and Sedov test problems. However, for

the Piston and Noh test problems, the PCH and PCHA methods produce similar results. These results
are shown in Figure 13.

Figure 13. Comparison of the PCH and PCHA methods on the Noh and Piston test problems.

The two methods, PCH and PCHA, yield essentially identical results in the case of the the Noh and
Piston test problems.

26

MPC Comparison to CCH
The MPC method uses an approach very similar to CCH. The results from these two different

methods are compared in Figure 14. Both the Sod and the Piston problems were used to compare the
two methods.

The MPC and CCH methods give similar results. The most notable difference is at the fixed boundary
for the Piston problem. The differing boundary conditions in MPC and CCH cause considerable
differences in the density at this boundary.

27

Figure 14. Comparison of the CCH and MPC methods.

Convergence Analysis
The code results from the four methods for the Sod, Piston, and Noh test problems were

analyzed at various mesh resolutions to ensure that the calculated results converged to the analytical
solutions. Since only first-order methods were used in the 1D hydrocode, near first order convergence
is to be expected. For the Piston and Noh test problems, the analytical solutions for pressure, density,
and internal energy are piecewise constant functions. For the Sod test problem, portions of the
analytical solution are not piecewise constant or linear. For comparison to the hydrocode results, these
portions of the analytical solution were resolved using a fixed mesh analytic code [6]. The analytical
code produces data points that represent the analytical solution. The results of the hydrocode at various
resolutions were mapped to the fixed mesh from the analytical code for comparison. The procedure for
this mapping algorithm is as follows.

Since the exact code uses a fixed mesh, the position of any point is given by

where xex is x-position for the analytical data points, i is the index (0, 1, 2, 3,...) and h is the constant
mesh spacing. The appropriate position for a point mapped from the hydrocode mesh, is then

Since the C language always rounds down in float to integer conversion (i.e. 2.24 and 2.99 both round
to 2), this equation always ensures that i is the index of the fixed mesh point just below the calculated
value, and i+1 is the index of the analytical data point just above the calculated value. The expected
analytical value and the error are then determined from linear interpolation of the analytical data points.
A sample of this algorithm for pressure is as follows.

where

Figure 15 illustrates this procedure. This same method can be used for analytical solutions without a
functional representation, such as the horizontal segments with discontinuities, but this results in a
slope of infinite magnitude, making linear interpolation unnecessary.

28

Convergence is measured by comparing the volume-weighted combination of all ΔP over the
domain with the mesh resolution. Two combinations are common, the L1 and L2 norms. The volume
weighted L1 norm is given as:

where Vi is the volume of the Lagrangian element at index i. The volume weighted L2 norm is

To measure convergence, the rate of decrease in the error with respect to the increase in mesh density is
measured. The error is quantified using the L1 and L2 norms. The rate decrease of the error should be
comparable to the order of the approximations used in the hydrocode. That is, a second order scheme
should show a quadratic decrease in error with increasing mesh density. The first order scheme that has
been implemented in the 1D hydrocode should show a first order decrease in error with increasing
mesh density. Each method is expected to converge according to the following general equation.

where ε is the error, A is the convergence coefficient, n is the number of cells, and k is the convergence
rate. A power law fit was used to determine the values of A and k that correspond to each method for
each test problem given a variety of mesh densities. These results are presented with the corresponding
test problem results in the following section.

29

Figure 15. The calculation of error from analytical data points.

Pi

Pi+1

Pcal

Pinterp

Δx

{ΔP

Test Problems
Sod Problem

The SOD problem simulates the interactions of two materials, one in the first half of the
domain, and the other in the second half of the domain. The first material has an initial density of 1
g/cc and internal energy of 2.5 megabar cc/g. The second material has an initial density of 0.125 g/cc
and internal energy of 2.25 megabar cc/g. The boundary conditions on both sides of the domain are
fixed and the domain is 100 cm in length. The gamma of both materials is set to 1.4. Both materials
have an initial velocity of zero and the imaginary barrier between them is removed at t=0. 100 zones
were used across the domain to simulate the problem. The results at 20 μs for the four different hydro
methods are compared to the analytical solution in Figure 16. SGH and CCH are shown on the left,
and MPC and PCHA are shown on the right. The SGH results are slightly more accurate compared the
CCH results. The SGH method follows the density discontinuity more accurately than the CCH
method at approximately 70 cm. The PCHA method shows numerical ringing about the density
discontinuity, while MPC tracks the analytical solution without numerical ringing.

 The analytical solution is known [5] and a computer code was used to calculate analytical data
points [6]. Convergence studies were carried out for each method. Table 3 shows the results of these
convergence studies.

Table 3. Convergence data for the Sod test problem.

Method Parameter L1

Convergence
Rate

L1

Convergence
Coefficient

L2

Convergence
Rate

L1

Convergence
Coefficient

CCH Pressure -0.756 0.7821 -1.1207 0.8325

Density -0.715 0.5559 -1.0763 0.5727

Specific Internal Energy -0.7652 1.8149 1.3086 -1.0401

MPC Pressure -0.7589 0.7968 -1.1206 0.8285

Density -0.7223 0.5937 -1.0704 0.5581

Specific Internal Energy -0.7829 2.1553 -1.0441 1.5312

PCHA Pressure -0.844 1.1623 -1.1174 0.7582

Density -0.8112 0.8217 -1.0903 0.5526

Specific Internal Energy -0.8755 3.17 -1.0642 1.7875

SGH Pressure -0.7926 0.6336 -1.1439 0.6956

Density -0.7672 0.5212 -1.1025 0.5006

Specific Internal Energy -0.8122 1.6637 -1.0348 1.0958

30

Figure 16. Comparison of the results from four methods for the Sod test problem.

31

Piston Problem
The piston problem consists of one material across the domain. The initial velocity, initial

pressure, and initial internal energy of the material is zero. The initial density of the material is 1 g/cc.
The boundary condition on the right is fixed with zero velocity. The boundary condition on the left is
fixed with a velocity of 1 cm/µs. The domain is 1 cm in length and 50 zones were used to simulate the
problem. The gamma of the material was set to 5/3. The results after 0.6 µs for the four hydro
methods are shown in Figure 17. SGH and CCH are shown on the left, and MPC and PCH are shown
in the right. The analytical solution to this problem is known. Table 4 shows the results of the
convergence studies for this test problem.

Table 4. Convergence data for the Piston test problem.

Method Parameter L1

Convergence
Rate

L1

Convergence
Coefficient

L2

Convergence
Rate

L2

Convergence
Coefficient

CCH Pressure -1.0145 0.4056 -1.0065 0.2534

Density -1.0015 1.8994 -1.0065 0.8630

Specific Internal Energy -1.0011 0.2905 -1.0085 0.1621

MPC Pressure -1.0120 0.4494 -1.0051 0.2966

Density -0.9995 1.6330 -1.0058 0.7468

Specific Internal Energy -0.9978 0.2024 -1.0054 0.1040

PCH Pressure -1.0101 0.5734 -1.0109 0.3007

Density -1.0021 1.5545 -1.0101 0.6628

Specific Internal Energy -0.9935 0.1702 -0.9999 0.0876

SGH Pressure -1.0018 0.3192 -1.0003 0.2827

Density -0.9962 0.9938 -1.0026 0.5665

Specific Internal Energy -0.9978 0.1068 -0.9934 0.0655

32

Figure 17. Comparison of results from four methods for the Piston test problem.

33

Noh
The Noh problem involves a single material moving at -1 cm/µs and colliding with a fixed

boundary at the origin. The domain for this simulation was set to 1 cm and 50 zones were used to
simulate the problem. The boundary at the origin is fixed and the boundary at the end is moving at -1
cm/µs with the fluid. The results are for a 1D simulation in planar, cylindrical, and spherical
coordinates with gamma equal to 5/3. The analytical solution is known [7].

Planar Coordinates

The results for planar coordinates are shown in Figure 18. Convergence data is recorded in
Table 5.

Table 5. Convergence data for the Noh test problem in planar coordinates.

Method Parameter L1

Convergence
Rate

L1

Convergence
Coefficient

L2

Convergence
Rate

L2

Convergence
Coefficient

CCH Pressure -1.0145 0.4056 -1.0065 0.2534

Density -1.0015 1.8994 -1.0065 0.8630

Specific Internal Energy -1.0011 0.2905 -1.0085 0.1621

MPC Pressure -1.0096 0.4392 -1.0065 0.2947

Density -0.9983 1.6114 -1.0054 0.7394

Specific Internal Energy -0.9980 0.2027 -1.0061 0.1047

PCH Pressure -1.0028 0.5569 -1.0049 0.2941

Density -0.9975 1.5221 -1.0040 0.6450

Specific Internal Energy -0.9938 0.1707 -0.9988 0.0863

SGH Pressure -1.0018 0.3192 -1.0003 0.2827

Density -0.9962 0.9938 -1.0026 0.5665

Specific Internal Energy -0.9954 0.1128 -1.0003 0.0699

Cylindrical Coordinates

The results for cylindrical coordinates are shown in Figure 19. The results of the convergence
studies for the Noh problem in cylindrical coordinates are shown in Table 6.

34

Table 6. Convergence data for the Noh test problem in cylindrical coordinates.

Method Parameter L1

Convergence
Rate

L1

Convergence
Coefficient

L2

Convergence
Rate

L2

Convergence
Coefficient

CCH Pressure -1.0068 5.7774 -1.0098 2.1002

Specific Internal Energy -0.8970 0.6561 -1.0037 0.3299

MPC Pressure -1.0169 7.0382 -0.9940 2.5974

Specific Internal Energy -0.88 0.4887 -1.0084 0.2416

PCHA Pressure -0.9901 5.8003 -0.9903 3.1239

Specific Internal Energy -0.8482 0.5744 -0.9986 0.2265

SGH Pressure -0.9888 16.9188 -0.9235 6.4584

Specific Internal Energy -0.7903 1.4122 -0.9314 0.7030

Spherical Coordinates

The results for spherical coordinates are shown in Figure 20. The results of the convergence
studies are shown in Table 7.

Table 7. Convergence data for the Noh test problem in spherical coordinates.

Method Parameter L1

Convergence
Rate

L1

Convergence
Coefficient

L2

Convergence
Rate

L2

Convergence
Coefficient

CCH Pressure -0.9721 31.4138 -1.0191 9.3409

Specific Internal Energy -0.8611 0.7734 -1.0023 0.3596

MPC Pressure 0.0477 5.3956 -0.4547 6.1347

Specific Internal Energy -0.8986 2.8903 -0.9886 1.4213

PCHA Pressure 0.0516 5.2193 -0.4507 5.9481

Specific Internal Energy -0.8696 2.3708 -0.9904 1.0447

SGH Pressure -1.0074 99.1013 -0.9668 32.2163

Specific Internal Energy -0.7842 2.3395 -0.9812 1.3969

It is interesting to note that for spherical coordinates, the convergence rate for the point centered
methods (MPC and PCHA) are positive for pressure in the L1 norm. This is a reason to further
investigate curvilinear coordinates for all the hydro methods presented. The results for a mesh
resolution of 10,000 zones is shown in Figure 21. It is clear that the MPC and PCHA methods
converge to a value for pressure near the wall that is less than the analytical value.

35

Figure 18. Comparison of results from four methods for the Noh test problem in planar coordinates.

36

37

Figure 19. Comparison of results from four methods for the Noh test problem in cylindrical coordinates.

38

Figure 20. Comparison of results from four methods for the Noh test problem in spherical coordinates.

The PCHA method produces numerical oscillations at the wall. Both the MPC and PCHA methods
converge to a lower pressure near the wall than the analytical solution demands.

39

Figure 21. MPC and PCHA results for the Sedov test problem, zoomed at the wall.

Sedov
The Sedov problem involves a blast propagating from the origin. The simulation is initialized

with a specified amount of internal energy deposited in the cell at the origin. Once the simulation is
started, a shock wave moves away from the origin. The domain for this simulation was set to 1.2 cm
and 60 zones were used to simulate the problem. The gamma of the gas was set to 5/3 across the
domain. The density is initially set to 1 g/cc across the domain, and the pressure and internal energy
are set initially to zero everywhere except at the origin. The analytical solution is known [8] and the
analytical data points for each simulation were computed using an analytical code [9]. The simulation
was run in planar coordinates. In cylindrical and spherical coordinates, the simulation produced
inconsistent results. Therefore, these results are not shown. Further investigation into the methods
used in the 1D hydrocode for cylindrical and spherical coordinates is recommended.

Planar Coordinates

For planar coordinates, the amount of extensive internal energy deposited in the cell at the
origin was 0.3 megabar cc. With this amount of energy, the exact form of the shock is located at
approximately 1 cm after 1µs. The extensive internal energy was divided by the mass of the cell at the
origin and applied to the cell at the origin as specific internal energy. The volume of the cell at the
origin is initially 0.02 cc, therefore, the amount of specific internal energy deposited in the cell at the
origin is 15 megabar cc/g. The results for planar coordinates are shown in Figure 22. SGH and CCH
are shown on the left, and MPC and PCHA are shown together on the right. The PCH method
experiences cell collapse in the Sedov test problem and the simulation stalls. Therefore no results were
obtained from the PCH method for the Sedov test problem.

40

Figure 22. Comparison of results from four methods for the Sedov test problem in planar coordinates.

41

The results for the PCHA method for the Sedov test problem clearly demonstrate the numerical
ringing associated with this method. Qualitative convergence studies were performed for the Sedov
problem in planar coordinates. The results are shown in Figure 23. The CCH and SGH methods
converge to the analytical solution as expected. The MPC method also converges. However, the
numerical ringing in the PCHA method produces errors of greater magnitude in pressure with a mesh of
300 zones compared to the mesh of 60 zones in Figure 22. It is also interesting to note that the PCHA
method does not converge to the analytical solution as the mesh is refined. The shock is still slow, as
predicted with a mesh of 60 zones, even with a mesh of 300 zones.

42

Figure 23. Effect of mesh refinement on the results for the Sedov test problem in planar coordinates.

43

Conclusions
The project focused on developing a 1D hydrocode to simulate gas dynamics using three

different discretization techniques. The techniques used were cell-centered (CCH), staggered grid
(SGH), and point-centered hydrodynamics (PCH). The PCH method proved to fail under strong shock
conditions. The failure was induced by zone collapse and a diminishing time step. Two additional PCH
methods were developed to mitigate this failure. These methods are called modified PCH (MPC) and
averaged PCH (PCHA). These two methods produced results for all test problems considered. MPC is
similar to CCH, simply shifted by half a cell. PCHA produces numerical oscillations at shock
discontinuities.

Four test problems were used to verify the hydrocode. These problems were the Sod, Piston,
Noh, and Sedov problems. For the Sod, Piston, and Noh problems, the convergence rates were
computed for each method. In planar coordinates, all convergence rates were consistent with the first
order numerical scheme used in the code. However, in spherical coordinates for the Noh problem, the
pressure did not converge to the analytical solution. Further investigation into curvilinear coordinates
is recommended for future work.

The CCH, SGH, and MPC methods showed qualitative convergence in the Sedov test problem
in planar coordinates. In curvilinear coordinates, the 1D hydrocode did not produce consistent results
for the Sedov test problem. The numerical oscillations produced by the PCHA method are more
apparent in the Sedov test problem than in other test problems.

In general, the SGH method performs better for the Sod and Sedov test problems. The CCH
method performs better for the Piston and Noh test problems. It is recommended that the different
PCH methods be investigated further in order to evaluate the merits of each method and perhaps
continue their development.

Future Work
Curvilinear Coordinates

For the Sedov test problem in cylindrical and spherical coordinates, the simulation did not
converge to a solution. It was found that as the cell size decreased and the amount of extensive internal
energy deposited in the cell at the origin remained constant, the simulation produced varying results.
Also, the simulation did not conserve total energy over the course of the simulation. In the future, this
issue needs to be studied, and solution needs to be determined. Some hypotheses have been formed.
The 1D hydrocode conserves total energy in the Sedov test problem in planar coordinates, but not in
cylindrical or spherical coordinates. Therefore, it seems most likely that the error in energy
conservation is due to the calculation of the areas and volumes in cylindrical and spherical coordinates.
Alternatively, the way the boundary conditions are formulated could be resulting in error for cylindrical
and spherical coordinates.

Second Order Scheme
The addition of a second order scheme would involve adjusting the Riemann solver in each of

the hydro method programs. Instead of assigning a value of pressure or velocity to an interface from

44

the nearest control volume, the pressure and velocity are projected via a central gradient. The
projection of the velocity is illustrated in Figure 24.

uc,z is evaluated at the cell interfaces using a gradient in a second order scheme. Assuming a constant
value across the control volume is a first order approximation. The central gradient is given by

\bigtriangledown u=\frac{u_{z+1}-u_{z-1}}{\frac{1}{2}(\Delta x)_{z-1}+(\Delta x)_z+\frac{1}{2}(\Delta x)_{z+1}}

and uc,z is given by

u_{c,z}=u_z+\frac{1}{2}(\Delta x)_z (\bigtriangledown u)

Limiters will also need to be used in a second order scheme. Limiters are used to limit the gradient if
the gradient projects a value that is greater than the highest value or less than the lowest value. Figure
25 illustrates this concept, where θz,p is a limiter.

45

Figure 24. Second order velocity projection.

z z+1z-1
x

u

u
z

uz-1

uz+1
Central
Gradient at z

u
c,z

uz
uc,z

2nd Order

1st Order

The limiter is computed using the formula

Similarly, at the interface at p-1, the limiter would be evaluated by

\theta_{z,p-1}=min \left [\frac{abs(u_{z}-u_{z-1})}{abs(u_{proj}-u_z)},1 \right]

The projected value, or corner value, at p can then be computed using

The corner values computed with the limited gradients are then used in the Riemann solver.

46

Figure 25. Second order velocity projection with a gradient limiter.

z z+1z-1 x

u

u
z-1

u
z+1

u
proj

uz

u
c,z

p-1 p

References
[1] R. Loubere, M. Shashkov, B. Wendroff, Volume consistency in a staggered grid Lagrangian

hydrodynamics scheme. Journal of Computational Physics 227 (2008); 3731-3737.
[2] J. Dukowicz, A general, non-iterative Riemann solver for Godunovs method. Journal of

Computational Physics 1985; 61:119-137.
[3] N. Morgan, A Lagrangian Staggered Grid Godunov-like Approach. Not yet published.
[4] N. Morgan, A dissipation model for staggered grid Lagrangian hydrodynamics. Computers and

Fluids 2013; 83:48-57.
[5] G.A. Sod, Survey of several finite difference methods for systems of nonlinear hyperbolic

conservation laws. Journal of Computational Physics 26 (1978).
[6] sod.py (Python Code for Sod Solution). Written by Scott Doebling, Los Alamos National Lab,

February 2013.
[7] W.F. Noh, Errors for calculations of strong shocks using artificial viscosity and an artificial heat

flux. Journal of Computational Physics 72 (1987); 78–120.
[8] L. I. Sedov, Propagation of strong shock waves, Journal of Applied Mathematics and Mechanics 10

(1946), 241–250.
[9] sedov_exact.py (Python Code for Sedov Solution). Written by Scott Doebling, Los Alamos

National Lab, August 2012.

47

Appendix
Convergence Plots
SOD
CCH

48

10 100 1000 10000 100000

0.0000

0.0001

0.0010

0.0100

0.1000

1.0000

f(x) = 0.8325 x^-1.1207
R² = 0.9995

f(x) = 0.7821 x^-0.7560
R² = 0.9990

CCH Sod Pressure

L1 Pressure
Power
Regression for L1
Pressure
L 2 Pressure
Power
Regression for L
2 Pressure

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000 100000

0.0000

0.0001

0.0010

0.0100

0.1000

1.0000

f(x) = 0.5727 x^-1.0763
R² = 0.9994

f(x) = 0.5559 x^-0.7150
R² = 0.9974

CCH Sod Density

L1 Rho
Power
Regression for
L1 Rho
L2 Rho
Power
Regression for
L2 Rho

Number of Cells

E
rr

or
 N

or
m

MPC

49

10 100 1000 10000 100000

0.0000

0.0001

0.0010

0.0100

0.1000

1.0000

f(x) = 0.5581 x^-1.0704
R² = 0.9994

f(x) = 0.5937 x^-0.7223
R² = 0.9980

MPC Sod Density

L1 Rho
Power
Regression for
L1 Rho
L2 Rho
Power
Regression for
L2 Rho

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000 100000

0.0000

0.0001

0.0010

0.0100

0.1000

1.0000

f(x) = 0.8285 x^-1.1206
R² = 0.9995

f(x) = 0.7968 x^-0.7589
R² = 0.9992

MPC Sod Pressure

L1 Pressure
Power
Regression for
L1 Pressure
L 2 Pressure
Power
Regression for L
2 Pressure

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000 100000

0.0000

0.0001

0.0010

0.0100

0.1000

1.0000

f(x) = 1.3086 x^-1.0401
R² = 1.0000

f(x) = 1.8149 x^-0.7652
R² = 0.9991

CCH Sod IE

L1 IE
Power
Regression for
L1 IE
L2 IE
Power
Regression for
L2 IE

Number of Cells

E
rr

or
 N

or
m

PCHA

50

10 100 1000 10000 100000

0.0000

0.0001

0.0010

0.0100

0.1000

1.0000

f(x) = 1.5312 x^-1.0441
R² = 0.9993

f(x) = 2.1553 x^-0.7829
R² = 0.9996

MPC Sod IE

L1 IE
Power
Regression for
L1 IE
L2 IE
Power
Regression for
L2 IE

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000 100000

0.0000

0.0001

0.0010

0.0100

0.1000

1.0000

f(x) = 0.7582 x^-1.1174
R² = 0.9997

f(x) = 1.1623 x^-0.8444
R² = 0.9999

PCH Sod Pressure

L1 Pressure
Power
Regression for
L1 Pressure
L 2 Pressure
Power
Regression for L
2 Pressure

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000 100000

0.0000

0.0001

0.0010

0.0100

0.1000

1.0000

f(x) = 0.5526 x^-1.0903
R² = 0.9999

f(x) = 0.8217 x^-0.8112
R² = 0.9997

PCH Sod Density

L1 Rho
Power
Regression for
L1 Rho
L2 Rho
Power
Regression for
L2 Rho

Number of Cells

E
rr

or
 N

or
m

SGH

51

10 100 1000 10000 100000

0.0000

0.0001

0.0010

0.0100

0.1000

1.0000

f(x) = 1.7875 x^-1.0642
R² = 0.9963

f(x) = 3.1700 x^-0.8755
R² = 0.9988

PCH Sod Internal Energy

L1 IE
Power
Regression for
L1 IE
L2 IE
Power
Regression for
L2 IE

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000 100000

0.0000

0.0001

0.0010

0.0100

0.1000

1.0000

f(x) = 0.6956 x^-1.1439
R² = 0.9998

f(x) = 0.6336 x^-0.7926
R² = 0.9993

SGH Sod Pressure

L1 Pressure
Power
Regression for
L1 Pressure
L 2 Pressure
Power
Regression for L
2 Pressure

Number of Cells

E
rr

or
 N

or
m

PISTON

CCH

52

10 100 1000 10000 100000

0.0000

0.0001

0.0010

0.0100

0.1000

1.0000

f(x) = 0.5006 x^-1.1025
R² = 0.9998

f(x) = 0.5212 x^-0.7672
R² = 0.9987

SGH Sod Density

L1 Rho
Power
Regression for
L1 Rho
L2 Rho
Power
Regression for
L2 Rho

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.2534 x^-1.0065
R² = 1.0000

f(x) = 0.4056 x^-1.0145
R² = 0.9999

CCH Piston Pressure

L1 Pressure
Power
Regression for
L1 Pressure
L 2 Pressure
Power
Regression for L
2 Pressure

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000 100000

0.0000

0.0001

0.0010

0.0100

0.1000

1.0000

f(x) = 1.0958 x^-1.0348
R² = 0.9998

f(x) = 1.6637 x^-0.8122
R² = 0.9995

SGH Sod Internal Energy

L1 IE
Power
Regression for
L1 IE
L2 IE
Power
Regression for
L2 IE

Number of Cells

E
rr

or
 N

or
m

53

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.1621 x^-1.0085
R² = 1.0000

f(x) = 0.2905 x^-1.0011
R² = 1.0000

CCH Piston Internal Energy

L1 IE
Power
Regression for
L1 IE
L2 IE
Power
Regression for
L2 IE

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.8630 x^-1.0065
R² = 1.0000

f(x) = 1.8994 x^-1.0015
R² = 1.0000

CCH Piston Density

L1 Rho
Power
Regression for
L1 Rho
L2 Rho
Power
Regression for
L2 Rho

Number of Cells

E
rr

or
 N

or
m

MPC

54

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.2966 x^-1.0051
R² = 0.9999

f(x) = 0.4494 x^-1.0120
R² = 0.9999

MPC Piston Pressure

L1 Pressure
Power
Regression for
L1 Pressure
L 2 Pressure
Power
Regression for L
2 Pressure

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.7468 x^-1.0058
R² = 1.0000

f(x) = 1.6330 x^-0.9995
R² = 1.0000

MPC Piston Density

L1 Rho
Power
Regression for
L1 Rho
L2 Rho
Power
Regression for
L2 Rho

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.1040 x^-1.0054
R² = 1.0000

f(x) = 0.2024 x^-0.9978
R² = 1.0000

MPC Piston Internal Energy

L1 IE
Power
Regression for
L1 IE
L2 IE
Power
Regression for
L2 IE

Number of Cells

E
rr

or
 N

or
m

PCH

55

10 100 1000 10000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.3007 x^-1.0109
R² = 1.0000

f(x) = 0.5734 x^-1.0101
R² = 1.0000

PCH Piston Pressure

L1 Pressure
Power
Regression for
L1 Pressure
L 2 Pressure
Power
Regression for L
2 Pressure

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.6628 x^-1.0101
R² = 1.0000

f(x) = 1.5545 x^-1.0021
R² = 1.0000

PCH Piston Density

L1 Rho
Power
Regression for
L1 Rho
L2 Rho
Power
Regression for
L2 Rho

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000

0.000001

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.0876 x^-0.9999
R² = 0.9999

f(x) = 0.1702 x^-0.9935
R² = 1.0000

PCH Piston IE

L1 IE
Power
Regression for
L1 IE
L2 IE
Power
Regression for
L2 IE

Number of Cells

E
rr

or
 N

or
m

SGH

56

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

f(x) = 0.2827 x^-1.0003
R² = 0.9999

f(x) = 0.3192 x^-1.0018
R² = 0.9999

SGH Piston Pressure

L1 Pressure
Power
Regression for
L1 Pressure
L 2 Pressure
Power
Regression for L
2 Pressure

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.5665 x^-1.0026
R² = 1.0000

f(x) = 0.9938 x^-0.9962
R² = 1.0000

SGH Piston Density

L1 Rho
Power
Regression for
L1 Rho
L2 Rho
Power
Regression for
L2 Rho

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000 100000

0.000001

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.0655 x^-0.9934
R² = 0.9999

f(x) = 0.1068 x^-0.9878
R² = 0.9999

SGH Piston IE

L1 IE
Power
Regression for
L1 IE
L2 IE
Power
Regression for
L2 IE

Number of Cells

E
rr

or
 N

or
m

Noh Planar Coordinates
CCH

57

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.2534 x^-1.0065
R² = 1.0000

f(x) = 0.4056 x^-1.0145
R² = 0.9999

CCH Noh Pressure

L1 Pressure
Power
Regression for
L1 Pressure
L 2 Pressure
Power
Regression for L
2 Pressure

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.8630 x^-1.0065
R² = 1.0000

f(x) = 1.8994 x^-1.0015
R² = 1.0000

CCH Noh Density

L1 Rho
Power
Regression for
L1 Rho
L2 Rho
Power
Regression for
L2 Rho

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.1621 x^-1.0085
R² = 1.0000

f(x) = 0.2905 x^-1.0011
R² = 1.0000

CCH Noh IE

L1 IE
Power
Regression for
L1 IE
L2 IE
Power
Regression for
L2 IE

Number of Cells

E
rr

or
 N

or
m

MPC

58

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.2947 x^-1.0065
R² = 0.9999

f(x) = 0.4392 x^-1.0096
R² = 0.9999

MPC Noh Pressure

L1 Pressure
Power
Regression for
L1 Pressure
L 2 Pressure
Power
Regression for L
2 Pressure

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.7394 x^-1.0054
R² = 1.0000

f(x) = 1.6114 x^-0.9983
R² = 1.0000

MPC Noh Density

L1 Rho
Power
Regression for
L1 Rho
L2 Rho
Power
Regression for
L2 Rho

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.1047 x^-1.0061
R² = 1.0000

f(x) = 0.2027 x^-0.9980
R² = 1.0000

MPC Noh IE

L1 IE
Power
Regression for
L1 IE
L2 IE
Power
Regression for
L2 IE

Number of Cells

E
rr

or
 N

or
m

PCH

59

10 100 1000 10000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.2941 x^-1.0049
R² = 0.9999

f(x) = 0.5569 x^-1.0028
R² = 1.0000

PCH Noh Pressure

L1 Pressure
Power
Regression for L1
Pressure
L 2 Pressure
Power
Regression for L
2 Pressure

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.6450 x^-1.0040
R² = 1.0000

f(x) = 1.5221 x^-0.9975
R² = 1.0000

PCH Noh Density

L1 Rho
Power
Regression for
L1 Rho
L2 Rho
Power
Regression for
L2 Rho

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.0863 x^-0.9988
R² = 0.9999

f(x) = 0.1707 x^-0.9938
R² = 1.0000

PCH Noh IE

L1 IE
Power
Regression for
L1 IE
L2 IE
Power
Regression for
L2 IE

Number of Cells

E
rr

or
 N

or
m

SGH

60

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.2827 x^-1.0003
R² = 0.9999

f(x) = 0.3192 x^-1.0018
R² = 0.9999

SGH Noh Pressure

L1 Pressure
Power
Regression for L1
Pressure
L 2 Pressure
Power
Regression for L
2 Pressure

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.5665 x^-1.0026
R² = 1.0000

f(x) = 0.9938 x^-0.9962
R² = 1.0000

SGH Noh Density

L1 Rho
Power
Regression for
L1 Rho
L2 Rho
Power
Regression for
L2 Rho

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000 100000

0.000001

0.000010

0.000100

0.001000

0.010000

0.100000

f(x) = 0.0699 x^-1.0003
R² = 1.0000

f(x) = 0.1128 x^-0.9954
R² = 1.0000

SGH Noh IE

L1 IE
Power
Regression for
L1 IE
L2 IE
Power
Regression for
L2 IE

Number of Cells

E
rr

or
 N

or
m

Noh Cylindrical
CCH

61

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 2.1002 x^-1.0098
R² = 1.0000

f(x) = 5.7774 x^-1.0068
R² = 0.9999

CCH Noh Pressure

L1 Pressure
Power
Regression for
L1 Pressure
L 2 Pressure
Power
Regression for L
2 Pressure

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.3299 x^-1.0037
R² = 1.0000

f(x) = 0.6561 x^-0.8970
R² = 0.9999

CCH Noh IE

L1 IE
Power
Regression for L1
IE
L2 IE
Power
Regression for L2
IE

Number of Cells

E
rr

or
 N

or
m

MPC

62

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 2.5974 x^-0.9940
R² = 0.9997

f(x) = 7.0382 x^-1.0169
R² = 0.9999

MPC Noh Pressure

L1 Pressure
Power
Regression for
L1 Pressure
L 2 Pressure
Power
Regression for L
2 Pressure

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.2416 x^-1.0084
R² = 0.9999

f(x) = 0.4887 x^-0.8800
R² = 0.9999

MPC Noh IE

L1 IE
Power
Regression for
L1 IE
L2 IE
Power
Regression for
L2 IE

Number of Cells

E
rr

or
 N

or
m

PCHA

63

10 100 1000 10000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 3.1239 x^-0.9903
R² = 1.0000

f(x) = 5.8003 x^-0.9901
R² = 1.0000

PCH Noh Pressure

L1 Pressure
Power
Regression for L1
Pressure
L 2 Pressure
Power
Regression for L
2 Pressure

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.2265 x^-0.9986
R² = 1.0000

f(x) = 0.5744 x^-0.8482
R² = 0.9995

PCH Noh IE

L1 IE
Power
Regression for
L1 IE
L2 IE
Power
Regression for
L2 IE

Number of Cells

E
rr

or
 N

or
m

SGH

64

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 6.4584 x^-0.9235
R² = 0.9977

f(x) = 16.9188 x^-0.9888
R² = 1.0000

SGH Noh Pressure

L1 Pressure
Power
Regression for L1
Pressure
L 2 Pressure
Power
Regression for L
2 Pressure

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000 100000

0.000001

0.000010

0.000100

0.001000

0.010000

0.100000

f(x) = 0.7030 x^-0.9314
R² = 0.9980

f(x) = 1.4122 x^-0.7903
R² = 0.9975

SGH Noh IE

L1 IE
Power
Regression for
L1 IE
L2 IE
Power
Regression for
L2 IE

Number of Cells

E
rr

or
 N

or
m

Noh Spherical
CCH

65

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 9.3409 x^-1.0191
R² = 0.9999

f(x) = 31.4138 x^-0.9721
R² = 0.9990

CCH Noh Pressure

L1 Pressure
Power
Regression for
L1 Pressure
L 2 Pressure
Power
Regression for L
2 Pressure

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.3596 x^-1.0023
R² = 1.0000

f(x) = 0.7734 x^-0.8611
R² = 0.9997

CCH Noh IE

L1 IE
Power
Regression for L1
IE
L2 IE
Power
Regression for L2
IE

Number of Cells

E
rr

or
 N

or
m

MPC

66

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

10.000000

f(x) = 6.1347 x^-0.4547
R² = 0.9964

f(x) = 5.3956 x^0.0477
R² = 0.7451

MPC Noh Pressure

L1 Pressure
Power
Regression for
L1 Pressure
L 2 Pressure
Power
Regression for L
2 Pressure

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 1.4213 x^-0.9886
R² = 0.9999

f(x) = 2.8903 x^-0.8986
R² = 0.9997

MPC Noh IE

L1 IE
Power
Regression for
L1 IE
L2 IE
Power
Regression for
L2 IE

Number of Cells

E
rr

or
 N

or
m

PCHA

67

10 100 1000 10000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

10.000000

f(x) = 5.9481 x^-0.4507
R² = 0.9963

f(x) = 5.2193 x^0.0516
R² = 0.7583

PCH Noh Pressure

L1 Pressure
Power
Regression for L1
Pressure
L 2 Pressure
Power
Regression for L
2 Pressure

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 1.0447 x^-0.9904
R² = 1.0000

f(x) = 2.3708 x^-0.8696
R² = 0.9996

PCH Noh IE

L1 IE
Power
Regression for
L1 IE
L2 IE
Power
Regression for
L2 IE

Number of Cells

E
rr

or
 N

or
m

SGH

68

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

10.000000

f(x) = 32.2163 x^-0.9668
R² = 0.9995

f(x) = 99.1013 x^-1.0074
R² = 1.0000

SGH Noh Pressure

L1 Pressure
Power
Regression for L1
Pressure
L 2 Pressure
Power
Regression for L
2 Pressure

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000 100000

0.000001

0.000010

0.000100

0.001000

0.010000

0.100000

f(x) = 1.3969 x^-0.9812
R² = 0.9999

f(x) = 2.3595 x^-0.7842
R² = 0.9980

SGH Noh IE

L1 IE
Power
Regression for
L1 IE
L2 IE
Power
Regression for
L2 IE

Number of Cells

E
rr

or
 N

or
m

Input Files
Sod Problem
$general
mats=2
np=101
L=100 (Radius in Cylindrical and Spherical)
init-ie?=1 (1 to use prescribed internal energy, 0 to use prescribed pressure)
init_from_cell=0 (0: No, the point values will be initialized using the spacial variation

from user input.)
(1: Yes, the point values will be initialized using the average of the

cell values.)
BC1=0 (0 or 1 for reflected or free boundary condition, respectively)
BC2=0
BCu1=0.0 (Boundary Velocity at start, used when fixed at left)
BCu2=0.0 (Boundary Velocity at end, used when fixed at right)
Method=CCH (CCH, SGH, PCH, or MPC [Modified PCH = Shifted CCH])

(Options for PCH)
VelOpt=0 (0: Computes the density and total energy change with the averaged point

velocities)
(1: Computes the density and total energy change with the Riemann velocities)

(Note: If VelOpt=1, the following options are inconsequential)
AvgOpt=0 (0: Uses the spacial average of the point velocities)

(1: Uses the time and spatially averaged velocities)
NodePosOpt=0 (0: Updates the Nodal Positions based on the nodal velocities)

(1: Updates the nodal positions based on the average of of the CV boundaries
at the end of the time integration loop)

Coordinate_System=car (car=Cartesian, cyl=Cylindrical, sph=Spherical)
$end

$mat1
u=0.0
p=1.0
rho=1.0
ie=2.5
x1=0
x2=50
gamma=1.4
$end

$mat2
u=0.0
p=1.0
rho=0.125
ie=2.0
x1=50
x2=100
gamma=1.4
$end

$IO
dt0=0.0000000000001
tstop=20.1
dtdump=20
CFL=0.03
CFLV=0.01 (Recommended: between 0.01 and 0.05. Never above 0.1)
$end

69

Piston
(Note: Use parentheses to enclose comments)
$general
mats=1
np=51
L=1
init-ie?=0 (1 to use prescribed internal energy, 0 to use prescribed pressure)
init_from_cell=0 1: Yes, the point values will be initialized using the average of the
cell values.

0: No, the point values will be initialized using the spacial variation
from user input.
BC1=0 (0 or 1 for reflected or free boundary condition, respectively)
BC2=0
BCu1=1.0 (Boundary Velocity at start, used when fixed at left)
BCu2=0.0 (Boundary Velocity at end, used when fixed at right)
Method=CCH

(3 Options for PCH)
VelOpt=0 (0: Computes the density and total energy change with the averaged point
velocities)

(1: Computes the density and total energy change with the Riemann velocities)

(Note: If VelOpt=1, the following options are inconsequential)
AvgOpt=0 (0: Uses the spacial average of the point velocities)

(1: Uses the time and spacially averaged velocities)
NodePosOpt=1 (0: Updates the Nodal Positions based on the nodal velocities)

(1: Updates the nodal positions based on the average of of the CV boundaries
at the end of the time integration loop)

(2: computes new point_dx values based on 0.5*[point_u[i+1]-point_u[i-1]].
The point_x values are updated the same as in NodePosOpt=0.
This should behave the same as NodePosOpt=0.)

Coordinate_System=car (car=Cartesian, cyl=Cylindrical, sph=Spherical)
$end

$mat1
u=0.0
p=0.0
rho=1.0
ie=0
x1=0
x2=1
gamma=1.66666666667
$end

$IO
dt0=0.0000000001
tstop=0.61
dtdump=0.6
CFL=0.03
CFLV=0.01 (Recommended: between 0.01 and 0.05. Never above 0.1)
$end

Noh
(Note: Use parentheses to enclose comments)
$general
mats=1
np=51
L=1
init-ie?=0 (1 to use prescribed internal energy, 0 to use prescribed pressure)
init_from_cell=0 1: Yes, the point values will be initialized using the average of the
cell values.

70

0: No, the point values will be initialized using the spacial variation
from user input.
BC1=0 (0 or 1 for reflected or free boundary condition, respectively)
BC2=0
BCu1=0.0 (Boundary Velocity at start, used when fixed at left)
BCu2=-1.0 (Boundary Velocity at end, used when fixed at right)
Method=CCH

(3 Options for PCH)
VelOpt=0 (0: Computes the density and total energy change with the averaged point
velocities)

(1: Computes the density and total energy change with the Riemann velocities)

(Note: If VelOpt=1, the following options are inconsequential)
AvgOpt=0 (0: Uses the spacial average of the point velocities)

(1: Uses the time and spacially averaged velocities)
NodePosOpt=1 (0: Updates the Nodal Positions based on the nodal velocities)

(1: Updates the nodal positions based on the average of of the CV boundaries
at the end of the time integration loop)

(2: computes new point_dx values based on 0.5*[point_u[i+1]-point_u[i-1]].
The point_x values are updated the same as in NodePosOpt=0.
This should behave the same as NodePosOpt=0.)

Coordinate_System=car (car=Cartesian, cyl=Cylindrical, sph=Spherical)
$end

$mat1
u=-1.0
p=0.0
rho=1.0
ie=0
x1=0
x2=1
gamma=1.66666666667
$end

$IO
dt0=0.0000000001
tstop=0.61
dtdump=0.6
CFL=0.03
CFLV=0.01 (Recommended: between 0.01 and 0.05. Never above 0.1)
$end

Sedov
(Note: Use parentheses to enclose comments)
$general
mats=2
np=61
L=1.2 (Radius in Cylindrical and Spherical)
init-ie?=1 (1 to use prescribed internal energy, 0 to use prescribed pressure)
init_from_cell=0 (0: No, the point values will be initialized using the spacial variation
from user input.)

(1: Yes, the point values will be initialized using the average of the
cell values.)

BC1=0 (0 or 1 for reflected or free boundary condition, respectively)
BC2=0
BCu1=0.0 (Boundary Velocity at start, used when fixed at left)
BCu2=0.0 (Boundary Velocity at end, used when fixed at right)
Method=CCH (CCH, SGH, PCH, or MPC [Modified PCH = Shifted CCH])

(3 Options for PCH)

71

VelOpt=1 (0: Computes the density and total energy change with the averaged point
velocities)

(1: Computes the density and total energy change with the Riemann velocities)

(Note: If VelOpt=1, the following options are inconsequential)
AvgOpt=0 (0: Uses the spacial average of the point velocities)

(1: Uses the time and spacially averaged velocities)
NodePosOpt=1 (0: Updates the Nodal Positions based on the nodal velocities)

(1: Updates the nodal positions based on the average of of the CV boundaries
at the end of the time integration loop)

(2: computes new point_dx values based on 0.5*[point_u[i+1]-point_u[i-1]].
The point_x values are updated the same as in NodePosOpt=0.
This should behave the same as NodePosOpt=0.)

Coordinate_System=car (car=Cartesian, cyl=Cylindrical, sph=Spherical)
$end

$mat1
u=0.0
p=0.0
rho=1.0
ie=15 (Extensive IE=0.3 MBar cc Volume=0.02 cc [that's 0.3/1])
x1=0
x2=0.02
gamma=1.66666666666667
$end

$mat2
u=0.0
p=0.0
rho=1.0
ie=0.0
x1=0.02
x2=1.2
gamma=1.66666666666667
$end

$IO
dt0=0.0000000000001
tstop=1.01
dtdump=1.0
CFL=0.2
CFLV=0.01 (Recommended: between 0.01 and 0.05. Never above 0.1)
$end

Selected Portions of Source Code
CCH Riemann Solver:

avg=(cell_u[i-1]+cell_u[i])/2.0;

c=sqrt(cell_gam[i-1]*cell_p[i-1]/cell_rho[i-1]); // c for cell on
left

if (c<0.000000001 || c!=c) { c=0.000000001; } //If c<1e-9 or
c=nan,set a minimum value for c

/* Calculate Compression-Aware mu on the left */
if ((cell_u[i]-cell_u[i-1])>0)
{

/* Expansion */
point_mu[0]=cell_rho[i-1]*c;

72

}
else
{

/* Compression */
point_mu[0]=cell_rho[i-1]*c+cell_rho[i-1]*

((cell_gam[i-1]+1.0)/2.0)*fabs(avg-cell_u[i-1]); //mu on
left

}

c=sqrt(cell_gam[i]*cell_p[i]/cell_rho[i]); // c for cell on right
if (c<0.000000001 || c!=c) { c=0.000000001; } //If c<1e-9 or c=nan,set a

minimum value for c

/* Calculate Compression-Aware mu on the right */
if ((cell_u[i]-cell_u[i-1])>0)
{

/* Expansion */
point_mu[1]=cell_rho[i]*c;

}
else
{

/* Compression */
point_mu[1]=cell_rho[i]*c+cell_rho[i]*

((cell_gam[i]+1.0)/2.0)*fabs(avg-cell_u[i]); //mu on right
}

/* Compute u* at each point */
point_u[i]=(cell_p[i-1]*point_normal[0]+cell_p[i]*

point_normal[1]+point_mu[0]*cell_u[i-1]
+point_mu[1]*cell_u[i])/(point_mu[0]
+point_mu[1]);

/* Compute p* at each point */
point_p[i]=point_mu[1]*(point_u[i]-cell_u[i])-cell_p[i]*

point_normal[1];

/* Check to verify Riemann Pressures are equal and opposite */
point_pstar_check=point_mu[0]*(point_u[i]-cell_u[i-1])-cell_p[i-1]*

point_normal[0];
if (fabs(point_p[i]+point_pstar_check)>pstar_tol)
{ check++; }

Runge-Kutta Time Integration Solution Loop:

do
{

alpha=1.0/(nstage+1.0-istage); // Establish the coefficient
CCHSolveRHS(mass,alpha,SphAvgOpt);
istage++; // increase the RK cycle number

} while (istage<=nstage);

CCH Conservation Equations:

for (i=0;i<nz;i++)
{

if (PiOpt==1) Area=GetAreaCCH(i);

73

else if (PiOpt==0) Area=GetAreaCCH_NoPi(i);

/* Calculate Forces on either side of the control volume */
Fstar[0]=-point_p[i]*point_normal[1]*Area; // Force on Left side of CV
Fstar[1]=-point_p[i+1]*point_normal[0]*Area; // Force on Right side of CV

v[i]=(1.0/mass[i])*(Fstar[0]+Fstar[1]);
e[i]=(1.0/mass[i])*(Fstar[0]*point_u[i]+Fstar[1]*point_u[i+1]);

}
/* +++++++++++++++End Calculate RHS ++++++++++++++++++++++++++++++ */
/* +++++++++++++++Begin Time Step Forward ++++++++++++++++++++++++++ */

for (i=0;i<np;i++)
{

/* Calculate new point_x values */
point_x[i]=point_x0[i]+alpha*dt*point_u[i];

}
for (i=0;i<nz;i++)
{

/* Calculate new dx */
cell_dx[i]=point_x[i+1]-point_x[i];

/* Calculate new rho */
if (PiOpt==1) Volume=GetVolumeCCH(i);
else if (PiOpt==0) Volume=GetVolumeCCH_NoPi(i);
cell_rho[i]=mass[i]/Volume;

/* Calculate new u */
cell_u[i]=cell_u0[i]+alpha*dt*v[i];

/* Calculate new total energy */
cell_te[i]=cell_te0[i]+alpha*dt*e[i];

/* Calculate new internal energy */
cell_ie[i]=cell_te[i]-0.5*pow(cell_u[i],2.0);

/* Calculate new pressure using EOS-Gamma Law Gas */
cell_p[i]=cell_rho[i]*(cell_gam[i]-1.0)*cell_ie[i];

}

74

2013 Computational Physics Student Summer Workshop: Final Reports

Plasma Mixing in ICF Applications

(Erik Vold, mentor)

Plasma Mixing In ICF Applications

Daniel Fenn, Ryan Moll, Erik Vold

August 19, 2013

Abstract

Accurate computer modeling of inertial confinement fusion processes repre-
sents a current challenge in ICF research. Current computer simulations tend
to overestimate the yield of fusion reactions initiated in laboratory experiments,
suggesting a need for the implementation of more sophisticated physical models.
Small scale, atomic-level mixing may occur, possibly having a significant impact
on fusion reactions in these experiments. Here we model thermal conduction,
viscosity, and mass diffusion as diffusion processes in two 1D, Lagrangian hydro
codes in spherical geometry. We will show that thermal conduction has the
greatest effect on peak temperatures in our simulated ICF implosions; however
viscosity and mass diffusion are potentially significant as well. We will also
draw contrasts between our results and the results of simulations done with a
1D Lagrangian hydro code called Helios, and compare the results of our two
independently developed codes.

1 Introduction
Intertial confinement fusion (ICF) is one of two major approaches to acheiving nuclear
fusion as a source of sustainable energy. The ICF approach utilizes a spherical capsule
of initial radius typically less than 1 mm, filled with a deuterium-tritium gas. We
restrict our attention here to direct-drive laser systems, in which high-energy laser
beams illuminate the entire surface of the fuel pellet. This applied laser energy results
in implosion of the capsule, and the resulting shock wave that propagates to the center
has the effect of increasing densities and temperatures in the central region to the
point of initiating a nuclear fusion reaction in the DT fuel.

Current computer simulations of the ICF process overestimate the yield of the
resulting nuclear fusion reaction, implying that there are important physical effects

1

that are not being accounted for in the computer models [1]. Fluid mixing is thought
to be the primary source of this discrepancy. One possible source of mixing arises
from large-scale fluid instabilities that develop inside the capsule during the implosion.
Laser power is not distributed uniformly over the surface of the capsule, potentially
leading to the growth of Rayleigh-Taylor and Richtmyer-Meshkov instabilities and
turbulence in the interior of the capsule. In addition to this large-scale mixing,
atomic-level mixing is thought to occur by means of plasma transport processes.

It is common for ICF simulations to implement phenomenological models of mix-
ing; however, it appears that these models do not adequately describe atomic-scale
mixing [2]. We explore here a different approach, in which plasma kinetic effects are
modeled in a simple approximation by diffusion. We implement diffusion of momen-
tum, temperature, and mass to simulate the effects of viscosity, heat conduction, and
diffusive mixing of shell and fuel materials in a straightforward 1D Lagrangian-frame,
spherically-symmetric model.

To facilitate the process of code verification, each of us developed an entire code,
independently of the other. Throughout this report, we will indicate important simi-
larities and differences between the codes, and highlight the benefits of this approach.

2 Governing Equations
The ICF system was modeled using the Euler equations for a binary fluid. Included
are equations describing the evolution of density, velocity, temperature, pressure, and
species number fraction. For all of our simulations, an ideal gas equation of state was
used for closure of the system.

Dρ

Dt
= −ρ∇ ·u

ρ
Du

Dt
= −∇p+∇ : (η0∇u)

N

(γ − 1)V

DT

Dt
= −p∇ ·u +∇ · (κe∇T)

DC

Dt
= ∇ · (D12∇C)

N = ρV Nav

(
C

mDD

+
(1− C)

mCH

)
p =

N

V
kT

2

In the above equations,ρ,u,T ,C and p represent density, velocity, temperature,
species mass fraction and pressure, respectively. Also, N is the number of particles,
Nav is Avogadro’s number, V is the zone volume, and γ is the adiabatic index (γ = 5

3

for all simulations). The plasma coefficients for thermal conduction, κe, and viscosity,
η0, are defined as [3]

η0 = 2.006× 107kT
5/2
i

λ
µ1/2 g

cm · s

κe = 1.101× 106kT
5/2
e

λme

1
cm · s

,

where k = 1.6×10−12 erg
eV is Boltzmann’s constant, λ ≈ 5 is the Coulomb logarithm,

meis the electron mass in grams, and µ is the mean particle mass in proton masses.
The variables Ti and Te are the ion temperature and the electron temperature, re-
spectively. It is important to note that throughout all of our simulations we make
the approximation that Ti = Te = T . The two fluids considered in our simulations
were fuel (DT) and shell material (CH). The mass diffusion coefficient describes the
diffusion of species one (fuel) into species two (shell material) and is defined using
the following prescription

D12 = 2470
(kT1)

5/2

m1λ

(
2.4

ρ1
m1

+
ρ2z

2
2

m2

)−1
,

where m1,2 is the mass of species 1 or 2 in atomic mass units. The atomic number
of species 2 is z2 and species 1 is assumed to be hydrogen. Also, ρ1,2 are the densities
of species 1 and species 2 in the zone

For preliminary testing, all diffusion terms were set to zero. In order to add
stability to the test system, particularly in the vicinity of the shock, a very basic
prescription for artificial viscosity was also used (artificial viscosity is displayed in its
discretized form and i is a spatial index)

qi =

{
ρi|∆ui| (cQ|∆ui|+ cLcs,i) ∆ui < 0

0 otherwise
,

where ∆u = ui−ui+1, cQ = 1
4

(γ + 1), and cL = 1
2
. The sound speed, cs, is defined

in the following way

cs =

√
γP

ρ
.

3

The conditional statement above for q implies that artificial viscosity is only active
in zones that are being compressed. It is interesting to note that even after turning
diffusion terms on, it was still necessary in one of our codes to keep artificial viscosity
to maintain numerical stability.

The above equations were those used in Ryan’s code. Daniel’s code was very
similar, with a few notable differences. In his code, C was defined as a species
number fraction, causing N to be defined as

N = ρV

(
1

CmDD + (1− C)mCH

)
,

where the masses are given in grams per particle. Additionally, Daniel’s code used
an artificial viscosity given by [4]

qi =

{
ρi|∆ui| (cQ|∆ui| (1− φ2) + cLcs,i (1− φ)) ∆ui < 0

0 otherwise
,

where φi = max

(
0,min

(
1, 2Ri+1, 2Ri−1,

1

2
(Ri+1 +Ri−1)

))
and Ri±1 =

∆ui±1
∆ui

.

3 Numerical Method
ICF implosions were simulated using two different 1-D Lagrangian hydro codes. In
the early stages of development one code was written using spherical geometry and
the other used planar geometry. Later on, both of our codes were adapted to use ex-
clusively spherical geometry. Also, for preliminary verification purposes the governing
equations were first solved without the diffusion terms. To discretize the governing
equations we used a first order finite difference method. To implement the discretized
equations into a simulation code we used a solution method similar to that prescribed
by Pember & Anderson [4]. In what follows, p represents the thermodynamic pressure
with the artificial viscosity added to it, unless otherwise noted. The basic structure
of our codes was the following (note that the superscript n denotes a temporal index,
and the subscript i denotes a spatial index):

1. Solve for the new velocity

un+1
i = uni −

∆t

ρ∆r

(
pni − pni−1

)
4

2. Use new velocities to determine new zone boundary positions

rn+1
i = rni −

1

2
∆t
(
un+1
i + uni

)
3. Using the new boundary positions, new zone volumes can be calculated, and

new densities can be calculated in a way that ensures mass conservation

ρn+1
i = ρni

V n
i

V n+1
i

4. New temperatures can then be calculated

T n+1
i = T n

i −
(γ − 1)V n+1

i pni
Ni

∆t

∆r

(
un+1
i+1 − un+1

i

)
5. Using the updated temperatures, new thermodynamic pressures can then be

calculated using the ideal gas equation of state (p in the following equation is
just the thermodynamic pressure)

pn+1
i =

Ni

V n+1
i

kT n+1
i

6. Finally, the new time step size is calculated

∆t = min

(
∆ri

cs,i + |un+1
i |

)
It is important to note that when ionization is turned on, the number of particles in
each zone may change due to the dissociation of electrons and atomic nuclei. When
ionization is considered, another step must be added after the density calculation to
recalculate the number of particles in each zone.

When thermal conduction, viscosity, and mass diffusion are turned on, the mass
fraction equation is solved between steps 4 and 5. Also the velocity, temperature and
mass fraction equations are solved implicitly. Aside from these differences, however,
the equations are solved in the same order.

4 Test Problems and Verification
Before beginning any real ICF simulations, we conducted several tests to ensure the
proper functioning of the individual components of our codes. These tests provided
valuable insight into the functioning of the code, and allowed us to move confidently
to the ICF simulation phase. The results of the tests are presented here.

5

4.1 Sod Shock Tube

The well-known Sod Shock Tube problem provides a valuable tool for code verifica-
tion, given that its exact solution is readily available. We constructed a simulation on
the interval [0, 1] with a temperature and pressure discontinuity at 0.5. The system
was allowed to evolve until t = 0.2 s, and the quantities of interest were compared
with the exact solution. All diffusion was disabled for this test.

We used the Fortran code provided by Toro [5] to generate data for the exact
solution. These solution points were regularly-spaced, as opposed to the solution
points from the hydrocode, which were irregularly spaced. We used a matlab script
to interpolate the points from the numerical solution and map it onto the exact
solution.

Fig. 1a contains both the exact and computed solutions for the density. The
agreement is very good, with noticeable artifacts at the shock front and the tail of
the rarefaction wave, as well as the contact discontiuity. From Fig. 1b, which plots
the relative error in the computed solution, we see that error exists almost exclusively
in these three regions. The average l2 error norm over the entire domain was 0.12%,
indicating that the code performed very well for this test.

4.2 Surrogate Guderley

The second test problem used to validate the implementation of the pure hydro equa-
tions was the Guderley problem. The Guderley test problem has a semi-analytic
solution and is a 1D problem with spherical geometry and an inward propogating
shock, making it ideal for the validation of the pure hydro equations describing ICF
implosions. The test problem is initialized with an excess of energy in the outmost
zones in the domain, causing a pressure disparity between the zones with excess
energy and those without. The outermost zones were also initialized with a larger
density than the interior zones furthercontributing to the difference in pressure. At
t = 0 the pressure jump causes compression of the inner zones and a shock propogates
toward the origin. Throughout the simulation a static outer boundary condition was
imposed. It is important to note that the data set used for validation was actually
from a Surrogate Guderley problem [6]. This Surrogate Guderley is still an appropri-
ate validation tool as long as the comparison is made when the shock is close to the
origin.

Fig. 2a shows a plot of both the semi-analytic and numerical solutions for the
pressure profile at 16 seconds (soon after the shock reflects off the origin), and Fig.
2b shows the percent error between these two solutions. The agreement was not as
close as with the Sod problem; however differences between the numeric and semi-

6

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

ρ

Numeric Solution

Exact Solution

(a) Density profile at t = 0.2 s.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

x

R
e
la

ti
v
e
 E

rr
o
r

(b) Relative error in the computed solution.

Figure 1: Comparison of the computed and exact solutions for the Sod Shock Tube.

7

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

t = 16.0

Radius

P
re

s
s
u
re

Semi−Analytic Solution

Numerical Solution

(a) A comparison between the numerical solution
and the semi-analytics to the surrogate Guderley
test problem.

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

t = 16.0

Radius

%
 E

rr
o
r

(b) A plot of the percent error between the two
solutions. The average error for the entire domain
(on the interval [0,10]) was about 1.12%.

Figure 2: The Guderley problem

analytic solutions were fairly small. Aside from at the location of the shock, errors
were less than 5% throughout the domain (on the interval [0,10]), and the average
error between the two solutions was 1.12%.

4.3 Diffusion Test

While these tests provided valuable insight into the functioning of the purely hydro-
dynamic aspects of the codes, they did not address the issue of diffusion. To address
this issue, we constructed a simulation of a system in pressure equilibrium, but with
a discontinuity in temperature, as illustrated in Fig. 3a. Due to the pressure equilib-
rium, a system constructed in this way remains static if there is no diffusion, making
it an ideal way to test the functioning of the diffusion alone.

After running the simulation, we compared the analytic diffusion length with
the diffusion length calculated from the hydrocode’s output at each time step. The
analytic diffusion length is given by 2

√
Dt, where D is the diffusion coefficient. The

computed diffusion length is calculated by determining the slope between the two
points in the simulation defining the center of the discontinuity. We find the point at
which this slope intersects with the lower initial temperature value, and the distance
between the center of the discontinuity and this point is the computed diffusion length.

Ideally, this simulation would be run in a planar geometry. However, due to the
fact that we implemented the diffusion terms in exclusively spherical geometry, we

8

0.75 0.76 0.77 0.78 0.79 0.8
8.5

8.55

8.6

8.65

r (cm)

T
e
m

p
e
ra

tu
re

 (
e
V

)

(a)

0.75 0.76 0.77 0.78 0.79 0.8
8.5

8.55

8.6

8.65

r (cm)

T
e
m

p
e
ra

tu
re

 (
e
V

)

(b)

Figure 3: Initial and final states for the diffusion test.

9

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t (timestep #)

R
e
la

ti
v
e
 E

rr
o
r

Figure 4: Approximate error in diffusion length

were unable to perform this test in true planar geometry. As an approximation, we
constructed the initial conditions such that the discontinuity occurred at a radius
that was very large compared to the size of the discontinuity.

Qualitatively, the diffusion performed as expected, with the discontinuity smooth-
ing itself out in a predictable fashion. The temperature state of the system at
t = 6.1 × 10−11 s is shown in Fig. 3b. Comparison with the analytic solution gave
acceptable results, with the relative error rapidly approaching 13% after the first few
time steps. Fig. 4 illustrates this result. Given the uncertainties involved in calcu-
lating the actual diffusion length, as well as the error added by the use of a spherical
coordinate system, these results were satisfactory.

5 ICF Setup
Following successful testing of the codes, we began the ICF simulation phase. We
elected to use a setup similar to that used in ICF simulations conducted using the
HELIOS code [7]. HELIOS is a 1D, Lagrangian hydrocode that includes extensive
atomic physics, including radiation. Providing inputs similar to those used in HE-
LIOS ICF simulations enabled a coarse level of code verification. Several sources of
uncertainty existed in these comparisons; these will be detailed in Sec. 6.

The parameters used corresponded to a typical Omega-scale direct-drive ICF im-
plosion, in which the ICF capsule consists of a deuterium gas surrounded by a plastic

10

Figure 5: Layout of the simulated ICF capsule.

shell. Both materials were modeled as ideal gases in pressure equilibrium, at a pres-
sure of 20 atm. The fuel was assumed to be at room temperature (300 Kelvin), from
which its density was calculated. The shell density was assumed to be one-hundred
times that of the fuel.

Fig. 5 illustrates the chosen layout, in which each computational zone corresponds
to roughly one micron, and the shell thickness is one-sixteenth that of the fuel radius.
The outer fifteen zones represent the laser illumination region. The temperature of
the zones in this region was artificially augmented at each time step for the duration
of the pulse to represent the delivery of the laser energy. We assumed a square laser
pulse with a duration of 1 ns, as shown in Fig. 6, and an absorption efficiency of 30%.
The energy was delivered uniformly to all of the zones in the illumination region. At
each time step, the temperature of each of these zones was increased by an amount
T ′, given by

T ′ =
2αPlaserdt

3Nd
,

where Plaser represents the laser power of 22 TW, α is the absortion efficiency, N is
the total number of particles in the zone, and d represents the penetration depth of
the laser energy, in zones.

An important consideration in the ICF setup is the implementation of boundary
conditions consistent with those in an actual ICF experiment. We attempted to
duplicate such conditions at the outer boundary by fixing the outer guard cell at
atmospheric conditions throughout the simulation. This allowed the outer boundary
of the plastic shell material to react in a natural way to the applied laser energy. We
chose the inner boundary conditions to reflect the spherical symmetry of the system.

11

Figure 6: Typical Omega facility laser pulse

As a result, the velocity of the zone boundary at the origin was fixed at zero, and
cell-centered quantities in the innermost zone were assumed to be identical to those
in a “ghost cell” on the other side of the origin. The dimensions of the ghost cell were
also assumed to be identical to those of the innermost zone.

As a final consideration in the ICF setup, we assumed that all post-shock material
was completely ionized. Simulations revealed the temperature of the shocked gas to
be ∼ 100 eV–well above the ionization energy of deuterium–indicating that this was
indeed a valid assumption.

6 Results
One of the most telling results in our study came from looking at the peak temperture
in the innermost zone as a function of spatial resolution. If we first consider a model
where diffusion is turned off, we observe that as the spatial resolution increases, and
each of the zones becomes smaller, the peak temperature appears to grow without
bound. However, when we then turn on the thermal conduction and plasma viscos-
ity, the peak temperature converges to a finite value as spatial resolution increases.
Clearly from Fig. 7, plasma transport effects have a crucial role in controlling the peak

12

0 200 400 600 800 1000 1200 1400 1600
0

5

10

15

20

25

30

35

40

45

50

Number of zones

P
e
a
k
 T

e
m

p
 a

t
z
o
n
e
 1

 (
k
e
V

)

With no plasma physics (divided by 100)

With all plasma physics

Figure 7: The figure shows peak temperature in the innermost zone versus number
of zones (spatial resolution). The blue trace represents simulations that were run
with no plasma physics effects activated, and the green trace represents simulations
that were run with all plasma physics effects activated. Peak temperatures in the
simulations with no plasma physics included are divided by 100 in this graph for
aesthetic reasons.

13

0 200 400 600 800 1000 1200 1400 1600
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of zones

P
e
a
k
 T

e
m

p
 a

t
z
o
n
e
 1

 (
k
e
V

)

Just thermal conduction

With all plasma physics

Figure 8: In this plot of peak temperature versus spatial resolution simulations that
only include thermal conduction are compared against simulations where all plasma
physics effects were included. Thermal conduction apears to be responsible for much
of the convergence of peak temperatures, particularly at higher resolutions.

temperatures at the origin. However, we can also develop a qualitative picture for
how thermal conduction and viscosity influence peak energies individually by running
simulations with only effect or the other activated.

When simulations with only thermal conduction activated are compared to simu-
lations with all plasma effects activated, it is apparent that thermal conduction has
a large effect on the convergence of peak temperatures, as shown in Fig. 8. At high
resolutions in particular, the thermal conduction simulations almost exactly overlay
those with all plasma physics effects active. Viscosity also seems to have an effect on
peak temperatures, though not as significant as the effect of thermal conduction, and
viscosity likely accounts for the majority of the difference between the two plots in
Fig. 8 at low resolution. From Fig. 9 it is clear that viscosity has a significant effect
on peak temperatures compared to simulations where no plasma physics effects are
included. Fig. 9 also shows, however, that simulations with only viscosity enabled
have much greater peak temperatures than when all plasma physics effects are en-
abled implying that the effect of viscosity is much less significant than the effect of
thermal conduction.

Fig. 10 demonstrates the net effect of all the additional diffusion physics, by com-
paring with pure hydro simulations at various points in time. The smoothing effects of

14

0 500 1000 1500 2000
0

1000

2000

3000

4000

5000

Number of zones

P
e
a

k
 T

e
m

p
 a

t
z
o

n
e
 1

 (
k
e

V
)

With no plasma physics

Just viscosity

(a) This is a comparison of simulation
which did not include any plasma physics
effects with simulations that included only
viscosity.

0 500 1000 1500 2000
0

50

100

150

200

Number of zones

P
e
a

k
 T

e
m

p
 a

t
z
o

n
e
 1

 (
k
e

V
)

With all plasma physics

Just viscosity

(b) This is a comparison between “viscos-
ity only” simulations and simulations that in-
cluded all plasma physics. Viscosity has a clear
effect on peak temperatures, but the influence
of thermal conduction is still most significant.

Figure 9: Analysis of plots with only viscosity enabled

the diffusion are easily observed. It is significant to note that in the simulations (run
by Daniel) that Fig. 10 are based on, the effect of the added plasma physics causes
the shock to speed up compared to simulations with no plasma physical effects. In
Ryan’s simulations, however, plasma physical effects caused the shock to slow down
relative to pure hydro simulations.

6.1 Comparison to Helios

As detailed in Sec. 5, we specified input parameters similar to those used in ICF
simulations carried out using the HELIOS code. In this section, we present a brief
comparison of our results with those produced by HELIOS.

It is important to note when comparing these results that several potentially
significant differences exist between the simulations run using the respective codes.
The HELIOS simulations take into account radiation, while our codes do not, the
implications of which we will attempt to highlight. Another important factor is the
fact that the HELIOS simulations do not include viscosity. We will attempt to provide
as accurate a comparison as possible by showing two comparisons with the HELIOS
results: the first in which viscosity was disabled in our simulations, and a second that
includes the effects of viscosity. As a final consideration, we note that we did not
know the laser absorption efficiency used in the HELIOS simulations. The value of
30% that we chose seemed a reasonable estimate. Due to these factors, we use the

15

0 0.01 0.02 0.03 0.04 0.05 0.06

10
20

10
22

10
24

r (cm)

ρ
 (

io
n
s
/c

m
3
)

Pure Hydro

With all diffusion

(a) t = 0 s

0 0.01 0.02 0.03 0.04 0.05 0.06

10
20

10
22

10
24

r (cm)

ρ
 (

io
n
s
/c

m
3
)

Pure Hydro

With all diffusion

(b) t = 5.5 × 10−10 s. In both cases, the shock has not yet reached the
center.

0 0.01 0.02 0.03 0.04 0.05 0.06

10
20

10
22

10
24

r (cm)

ρ
 (

io
n
s
/c

m
3
)

Pure Hydro

With all diffusion

(c) t = 9.25× 10−10 s. Reflected shocks are discernable in both cases.

Figure 10: Density profiles for simulations with and without diffusion physics. Note
the smoothing effect of the diffusion.

16

HELIOS Ryan Daniel
Peak T (keV) 2.8 3.5 10

Peak density (ions/cc) 1.2× 1025 2.1× 1026 2.6× 1027

Table 1: Simulations run without viscosity effects for comparison with HELIOS re-
sults.

Ryan
(viscosity
included)

Ryan
effect of
viscosity

Daniel
(viscosity
included)

Daniel
effect of
viscosity

Peak T
(keV) 3.5 1%

increase 4.3 60%
decrease

Peak
density
(ions/cc)

2.2× 1026 5.8%
increase 4.5× 1024

decreased
by 3

orders of
magnitude

Table 2: Effects of viscosity on peak temperatures and densities.

HELIOS results as a loose guideline only.
Table 1 gives the comparison to HELIOS results in which viscosity effects were

not included in our simulations. Notice that both Ryan and Daniel’s codes give peak
temperatures and densities that are noticeably higher than those given by HELIOS.
There are several likely contributing factors to this discrepancy, the first being the
possible difference in laser efficiencies used. Additionally, the HELIOS simulation
used very few zones for the gas material, so that the peak density in the innermost
zone is expected to be smaller, since the zone itself is larger. Finally, radiation likely
plays a role in the HELIOS outcomes–a role that is absent in our results.

Table 2 summarizes the effect of including viscosity in the simulations. Note the
modest effect seen in Ryan’s code, compared with the dramatic effect exhibited in
Daniel’s. We postulate that this disagreement between the codes stems at least in part
from temperature differences which are magnified by the T 5/2 term in the diffusion
coefficients. We will revisit this idea in more detail in Sec. 6.2. Interestingly, notice
that this change has the effect of bringing Daniel’s code into much closer agreement
with the HELIOS code than previously. Importantly, in both codes, the effects of
viscosity seem non-negligible–even for 1D simulations. This is notable, given the fact
that viscosity is not widely included in ICF simulations.

A summary of the comparison between HELIOS results and our results with all

17

HELIOS Ryan Daniel
Peak T (keV) 2.8 3.5 4.5

Peak density (ions/cc) 1.2× 1025 2.2× 1026 5.7× 1024

Table 3: Comparison of simulations including all diffusion physics with HELIOS
results.

0 0.5 1 1.5 2 2.5 3
0

100

200

300

400

Time (ns)

Z
o
n
e
 B

o
u

n
d

a
ry

 P
o
s
it
io

n
 (

µ
m

)

Shell Material

Fuel (DD)

(a) Our simulation (b) Helios simulation [7]

Figure 11: Zone boundary positions as a function of time

diffusion terms included is shown in Table 3. The peak temperatures are in good
agreement, and the peak densities seem consistent with HELIOS results, given the
above-mentioned differences in the problem setups. In Fig. 11 plots of boundary
location versus time are displayed for our results and for the Helios code. Qualitatively
our results are very similar, and the minimum radius in each case is similar as well.
However, the time at which the shell material is blown back out by the shocks is
different in the different simulations. Also it is important to note that the spatial
resolution in the Helios simulations is coarser near the origin, which may explain the
large discrepancy in density between our codes and the Helios code.

6.2 Code Comparison

The motivation for the independent development of two hydrocodes arose from the
ability of this arrangement to facilitate code verification. The results presented in
Sec. 6.1 highlight the utility of such an arrangement, as evidenced by the discrepancies
in results furnished by the codes. It is important to note that at the time of this
writing, the verification process is ongoing. We have identified possible sources of

18

discrepancy between the codes, and, given adequate time, are confident that these
differences could be resolved.

As mentioned in Sec. 6.1, we have observed temperature variations between the
codes that become magnified as the shock converges toward the center of the sphere.
With all diffusion disabled, agreement between the two codes is much better. It
seems likely that the diffusion coefficients, all of which depend on T 5/2, are strongly
augmenting the initial differences in temperature. We have further observed that the
peak densities and temperatures seem relatively sensitive to differences in problem
setup–for instance, the penetration depth of the laser energy and laser absorption
efficiency. The combined effects of temperature-difference magnification by means of
the diffusion coefficients and relative sensitivity to early conditions likely account for
the majority of the inconsistencies we observe.

An interesting next step would be to implement radiation physics. The higher
temperatures seen in Daniel’s code would result in greater energy loss by radiation,
likely bringing the results in greater alignment with Ryan’s, though the extent of
this effect is unknown. It is possible that the differences seen are merely the result
of modeling the same physical setup in two different ways, and that the inclusion of
more realistic physics, such as radiation, would allow both codes to converge toward
a more physically-realistic solution.

Despite these differences, the fact remains that both codes gave peak energies
similar to the HELIOS simulation results, and peak densities that seem consistent
with these results.

7 Conclusions
The hydrocodes we have developed are still a work in progress; this notwithstanding,
some important conclusions can be drawn from current results. We have seen that
thermal conduction plays a crucial role in ICF, and is essential for accurate simu-
lations. The importance of viscosity in 1D ICF simulations is less pronounced. It
appears from our simulations that the effect may be important, but further study
is necessary to determine the magnitude of this effect. The viscosity is more likely
to play a role in high resolution 2D or 3D simulations including drive asymmetries.
The species diffusion proved to be an area of significant disagreement between our
codes, with Ryan’s results showing very little mixing, and Daniel’s indicating a large
degree of mixing at the boundary layer. These results may reflect the sensitivity of
the diffusion coefficients to differences in temperature. Result differences may also be
related to the code difference in the diffusion gradient drive where the mass fraction
was used in one code (Ryan’s) and the molar fraction was used in one case (Daniel’s).

19

The differences are inconclusive and will require further study.
Additionally, we conclude from this work that comparison between two independently-

developed codes is a valuable tool for verification. The differences between our two
codes highlight the fact that coding is a difficult process, and the results should be
treated with a degree of skepticism. We see as well that the effects of differing ap-
proaches to the same problem can be significant. It is our hope that as the codes
become more physically realistic by the inclusion of more sophisticated physics, these
differences will be increasingly reduced.

8 Future Work
There are several natural extensions to the work presented here, which can and should
be pursued in future investigations of ICF modelling. One improvement to our codes
that could be implemented immediately is to add radiation transport terms to the
temperature equation. It is unclear how great an effect this physics would have on
our results; however the model implemented in the Helios code includes the effects of
radiation transport, so incorporating it into our codes would provide a better basis for
comparison. A logical next step would be to adapt our codes to 2D geometry. A 2D
spherical geometry code would allow for the application of asymmetrical laser forcing
in the outer shell of the simulated capsule, and it would allow us to see the effects
of this asymmetry on peak temperatures and densities at the center of the capsule.
Viscosity was seen to have at least a modest influence on the the peak values in
the 1D case; however as fluid instabilities and turbulence arise from asymmetrically
applied laser forcing [8], then viscous effects could become quite significant. After
building a 2D Lagrangian code, the next step would be to remap the simulation to
the Eulerian frame so that the instabilities that arise from the asymmetrical forcing
can be analyzed in greater detail without being subject to Lagrange mesh tangling.

References
[1] Atzeni, S., ’The physical basis for numerical fluid simulations in laser fusion’,

Plasma Phys. Control. Fusion 29 1535 (1987).

[2] Wilson, D.C., Ebey,P.S., Sangster,T.C., Shmayda,W.T., Glebov,V.Yu, etal.,
’Atomic mix in directly driven inertial confinement implosions’, Phys. Plasmas,
18, 112707 (2011).

20

[3] Braginskii, S.I., ’Transport Processes in a Plasma’, Reviews of Plasma Physics,
Vol. 1 (Consultant Bureau, New York, 1965), p. 205

[4] Pember, R.B., Anderson, R.W., ’A Comparison of Staggered-Mesh Lagrange Plus
Remap and Cell-Centered Direct Eurlerian Godunov Schemes for Eulerian Shock
Hydrodynamics’, Nuclear Explosives Code Developers Collaborations (NECDC)
2000 Oakland, CA October 23-27, 2000, Lawrence Livermore National Laboratory
(2000) .

[5] Toro, E., Riemann Solvers and Numerical Methods for Fluid Dynamics: A Prac-
tical Introduction, Springer-Verlag Berlin Heidelberg 2009.

[6] Ramsey, S., Shashkov, M.J., ’Surrogate Guderley Test Problem Definition’, Los
Alamos National Laboratory unclassified report LA-UR-12-22751, Los Alamos,
NM (2012).

[7] MacFarlane, J.J., Golovkin, I.E. Woodruff, P.R., ’HELIOS-CR A 1-D radiation-
magnetohydrodynamics code with in-line atomic kinetics modeling’, J.Quant.
Spectro. and Rad. Transfer, 99 381-397 (2006).

[8] Thomas, V.A., Kares, R. ’Drive asymmetry and the origin of turbulence in ICF im-
plosions’, Los Alamos National Laboratory unclassified report LA-UR-11-03527,
Los Alamos, NM (2011).

Acknowledgements
We would like to acknowledge the Computational Physics Student Summer Work-
shop for providing us with the opportunity to conduct this research. We would, in
particular, like to thank Scott Runnels for all the hard work he put forth to make the
workshop a success. We would also like to thank Scott Ramsey for providing us with
valuable semi-analytic test problem data.

21

2013 Computational Physics Student Summer Workshop: Final Reports

An Improved Time Step Controller
for xRage

(Tom Masser, mentor)

An Improved Time Step Size Control for xRAGE’s 3-T Plasma Code

Catherine M. Gosmeyer

Partner: Brandon K. Wiggins

Adviser: Thomas Masser

Los Alamos National Lab

Computational Physics Workshop Summer 2013

LA-UR pending

August 15, 2013

Abstract

The time step size algorithm used in xRAGE’s 3-T plasma code could be optimized. In order to resolve all

of the detail in the equilibrating system, the present algorithm picks a very small initial step size and grows it

at an insignificant rate, even when the system has reached equilibrium and could be fully resolved with a larger

step size. Here we develop an improved algorithm that grows or shrinks the step size as appropriate to capture

all of the system’s anomalies, and as result, may speed up the wall time. We also describe how we implemented

the algorithm into the xRAGE code.

1 Introduction

The three-temperature (3-T) coupling equations in LANL’s xRAGE code may become stiff. Stiffness occurs when

the numerical methods being used to solve the equations are unstable, forcing the time step size to be very small

in order to obtain satisfactory results (Jackiewicz 2009). A constantly small step size is highly inefficient. In its

present state, the xRAGE code uses a slightly ad hoc algorithm to vary step sizes; in order to obtain the best

results, it is best to always use a small step size. The code can be vastly improved if we can develop an algorithm

that can grow and shrink the step size as appropriate for the changes that occur in the electron, ion, and radiation

temperatures. Our goal in this project is to develop a “golden mean” control, which does not sacrifice accuracy for

speed, and whose runtime is still shorter than present controls’. The plot in Figure 1 motivates this goal.

LA-UR pending –2– Gosmeyer & Wiggins, 2013

Figure 1: The dotted line shows the throttled integration and the solid line shows a sped-up integration, both using
controls presently in xRAGE. There is a noticeable difference between forcing the time step to be small and

taking larger step sizes in order to decrease the runtime. An especially poor match is in the radiation temperature,
where the sped-up integration misses the true minimum. We hope to develop a smarter control that will take small

step sizes only when necessary, without needing to sacrifice accuracy for speed.

Another problem with the 3-T solver is that it arbitrarily assigns the initial step size to a very small value,

without taking the physical parameters of the system into account.

xRAGE, the “Radiation Adaptive Grid Eulerian” code, is a cell by cell adaptive mesh refinement Eulerian

radiation hydrodynamics code. It contains 3-T plasma physics, which xRAGE solves by operator splitting in time.

A more complete description is given in Gittings et al. (2008) and McClarren & Wöhlbier (2010).

xRAGE’s plasma model is used in many astrophysical problems, such as supernova simulations. It is of interest,

then, to find a smarter and faster algorithm.

2 The 3-T Equations

Plasma models often assume two temperatures, an electron temperature and an ion temperature. If the plasma

model is coupled with a radiation diffusion model, in which radiation energy density can be described by a radiation

temperature, we obtain a three-temperature (3-T) model.

xRAGE contains such a 3-T plasma physics model, which it solves for one-dimensional spatial problems using

these six PDEs:
δρ

δt
+ ∇ · ρu = 0 (1)

LA-UR pending –3– Gosmeyer & Wiggins, 2013

δ

δt
ρu + ∇ · (ρu ⊗ u + Pe + Pi) +

1
3
∇Er = 0 (2)

δρei

δt
+ ∇ · (ρeiu) + ∇ · qi + Pi : ∇u = γei(Te − Ti) + Ṡ i (3)

δρee

δt
+ ∇ · (ρeeu) + ∇ · qe + Pe : ∇u = γei(Ti − Te) + cσa(Er − aT 4

e) + Ṡ e (4)

δ

δt
ρE + ∇ · [(ρE | +P) · u] + ∇ · (qe + qi) = cσa(Er − aT 4

e) −
1
3

u · ∇Er + Ṡ i + Ṡ e (5)

δEr

δt
+

4
3
∇ · (uEr) − ∇ · (κ∇Er) = −cσa(Er − aT 4

e) +
1
3

u · ∇Er. (6)

See Wöhlbier (2007) for a more in-depth description of the PDEs.

If we remove spatial dependence, we obtain three ODEs. These are simpler to work with and therefore we use

them as a starting point for developing our own solvers to test our new step size controls.

The 3-T ODE coupling equations to be solved are

δEr

δt
= cσa(aT 4

e − Er) (7)

δρee

δt
= γei(Ti − Te) + cσa(Er − aT 4

e) (8)

δρei

δt
= γei(Te − Ti) (9)

We define radiation temperature as Er = aT 4
r and rescale the radiation interaction coefficient

σ̂ = σa
T 4

e − T 4
r

4T 3
r (Te − Tr)

.

Letting 1
2τR

= cσ̂ and 1
2τP

=
γei
ρCv,i

, the final reduced form is

δTr

δt
=

Te − Tr

2τR
(10)

δTe

δt
= f1

Tr − Te

2τR
+ f2

Ti − Te

2τP
(11)

δTi

δt
=

Te − Ti

2τP
. (12)

Two of the four parameters of the system are

f1 =
Cv,i

Cv,e

LA-UR pending –4– Gosmeyer & Wiggins, 2013

and

f1 =
4aT 3

r

ρCv,e
.

The two other parameters are the radiation and plasma relaxation times, τR and τP. The temperature of the

radiation, electron, and ion components are, respectively, Tr, Te, and Ti. The density is ρ, the radiation constant is

a, and the specific heats for electrons and ions are Cv,e and Cv,i.

We introduce here a backward Euler (implicit) method for solving the 3-T coupling equations. The implicit

equations are obtained by first converting the above 3-T equations into matrix form,

δ

δt
x = Ax,

in which,

A =


− 1

2τR

1
2τR

0

f2
2τR

−
(

f2
2τR

+
f1

2τP

)
f1

2τP

0 1
2τP

− 1
2τP

 ,
with the eigenvalues

λ = 0,−
τP + f2τp + τR + f1τR ±

√
(τP + f2τP + τR + f1τR)2 − 4τPτR(1 + f1 + f2

4τPτR

We invert the matrix and solve for the updated temperatures,

T n+1
r =

(1 + 2R + P + RP)T n
i + (P + RP)T n

e + RPT n
r

1 + 2R + 2P + 3PR
(13)

T n+1
i =

(1 + 2P + R + RP)T n
r + (P + RP)T n

e + RPT n
i

1 + 2R + 2P + 3PR
(14)

T n+1
e = f1(T n

i − T n+1
i) + f2(T n

r − T n+1
r) + T n

e , (15)

where R = ∆t
2τR

and P = ∆t
2τP

.

Note that the 3-T equations conserve total energy. In order to obtain the updated electron temperature (Equation

15), we note that

d
dt

(f1Tr + Te + f2Ti) = 0.

LA-UR pending –5– Gosmeyer & Wiggins, 2013

2.1 Operator Splitting

The 3-T equations can be split into radiation and plasma components and solved one at a time instead of all at

once. There are many splitting methods available in the literature, for instance, Lie splitting and Strang splitting.

Here is an example of how to split the equations.

First solve:
δρee

δt
= γei(Ti − Te)

δρee

δt
= γei(Te − Ti)

Then solve:
δEr

δt
= cσ(aT 4

e − Er)

δρee

δt
= cσ(Er − aT 4

e).

We looked briefly into the difference in the solutions caused by solving the equations by splitting and by solving

the equations whole. We did not pursue this analyses far, however, and instead spent most our time investigating

step size controls.

2.2 The Test Code

We wrote two solvers for Equations 13, 14, and 15 in order to test our new time step size controls. One was written

in IDL and produced plots for comparing step size controls over various permutations of the initial temperatures

and the relaxation times. An example plot is shown in Figure 2. These test solvers were necessary because we did

not wish to test our controls in xRAGE itself. They allowed us the flexibility to switch in and out step size controls

and develop the controls in a simple environment.

In order to incorporate our final controls into xRAGE we needed to translate our C and IDL into Fortran90.

We describe this process further in Section 4.

LA-UR pending –6– Gosmeyer & Wiggins, 2013

Figure 2: An example of the output of the IDL test solver. The left plot shows the relaxation of the three
temperatures using Lie splitting Implicit Euler when the initial relaxation times both are 0.5 seconds and the
initial temperatures are Ti = 150, Te = 50, and Tr = 100 eV. The right plot shows the change in step size and

relaxation times with time on a log scale.

3 Present Time Step Size Algorithms

xRAGE currently contains several step size controls for the radiation and plasma components.

3.1 Initial Step Size

For relaxation problems like these, xRAGE currently uses only two parameters, based on plasma and radiation, to

choose the initial time step size.

The plasma initial step size is set in the subroutine “threet inital tstep” located in the threet.f90 module. There,

“3TForce” suggests ∆t0,P = 10−14 seconds. The purpose is to ensure the first step size is small enough so that no

rapid changes in the temperatures are overlooked. This algorithm is, however, not based on the physics of the

system.

The radiation initial step size is set in the subroutine “inital tstep” in module initial.f90. In this subroutine,

“RadZero” suggests ∆t0,R = ∆x/5clight seconds. This is based on radiation diffusion, but still might be based on

more relevant parameters.

The time step controller in module tstep.f90 receives all of these suggested step sizes, takes the minimum,

and divides by 10. The result is the initial step size for the entire system. This initial value (∆t0 ≤ 10−15 seconds)

works well to capture the temperature relaxation in most cases; however, it needs not be as small as it is, and it has

the unintended consequence of keeping the subsequent step sizes always very small.

LA-UR pending –7– Gosmeyer & Wiggins, 2013

3.2 Subsequent Step Sizes

xRAGE has several options for step size control of subsequent steps. We list four in Table 1 and go into more detail

below.

Table 1: Step size control options.
The status lists whether the control is turned on or off by default.

Control Status Location
dtev±chg on module radiation library.f90
dt splits off module radiation diff.f90
ei-couple off threet.f90

20 pct on module tstep.f90

3.2.1 dtev±chg

The basis of dtev±chg is the change to the final equilibrium temperature from cycle to cycle. A possible problem

with this algorithm is that the current step size is based on conditions potentially in the distant future. For uniform

domain problems, the equation for dtev±chg’s updated step size looks like

∆tnew = ∆toldmax
(

f loor,
ηtarget

η

)
,

in which,

η =
|T ′eq − Teq|

max(T ′eq,Teq) + ε

and

ηtarget = 0.2 (de tevpct).

The equilibrium temperature before the radiation update is Teq and the equilibrium temperature after the radiation

update is T ′eq. The offset to prevent division by zero is ε.

3.2.2 dt splits

dt splits is based on electron temperature changes from the radiation solver. It does not, however, have a floor.

Without a floor the step size can go to zero and the code then grind to a halt. This control is turned off by default.

The equation for the updated time is

∆tnew = ∆told
ηtarget

η
,

LA-UR pending –8– Gosmeyer & Wiggins, 2013

where

η =
T ′e − Te

max(ε,T ′e,Te)

and

ηtarget = 0.2 (siepct).

The ε acts as an offset to prevent division by zero.

Note that the absolute value of the temperature difference is not taken. This means that in the equation for ∆tnew

only positive η’s are considered, and therefore T ′e > Te, and so this control only influences ∆t when the electron

temperature increases. This could be a bug (or an intended feature). We view this effect as a defect.

3.2.3 ei-couple

The equation for the step size control related to electron-ion coupling is

∆tnew =
ρ

γei

min(|ee|, |ei|)
|Ti − Te|

ηtarget,

where

ηtarget = 0.4 (siepct 3t).

Similar to dt splits, ei-couple is based on |Ti − Te| but also contains no floor. This control too is turned off by

default.

3.2.4 20 pct

Finally, 20 pct increases each step size by 20% of the previous step. The percent cycle-to-cycle increase may be

set by the user using the code parameter dtfac grow (default value 1.2).

This has its merits in that the step size is smallest at the beginning of the run, where there are more bumps in

the temperature, and it increases as the system goes to equilibrium, where there are fewer areas of interest. This is

similar to the control we want to develop; but 20 pct could be more elegant if it were based on physical parameters.

And because the initial step size selects such a small number, 20 pct is not as effective as it could be, and the step

size remains forever small.

LA-UR pending –9– Gosmeyer & Wiggins, 2013

4 The Improved Step Size Algorithm

An improved step size algorithm would be based on relevant physical parameters. Our algorithm makes use of the

plasma and radiation relaxation times, here labeled as τP and τR, which xRAGE already calculates.

4.1 Derivation

Our algorithm has the form,

∆tnew = max

λRτR,∆told

(
ηtarget,R

η

)1/2
located in module radiation diff.f90, and,

∆tnew = max

λPτP,∆told

(
ηtarget,P

η

)1/2 ,
located in threet.f90.

Here η is a relative temperature change and ηtarget is the target change. If the change overshoots the target, the

step size will shrink. Likewise, if the change is smaller than the target, the step size will be allowed to grow.

The floor terms are λτ, where λ is a fraction and τ is the relevant relaxation time.

We gave our control a floor based on a fraction of the relevant relaxation time such that the step size could not

become arbitrarily small.

We combined the floor with a well-known time step size control from the literature (see Rider & Knoll (1999)),

shown as the second terms in the maximum function above.

4.2 Usage in xRAGE

To turn on our step size control, set

improved tsc = .true.

Note the following variable names in xRAGE.

• λP = ei dtfac, the fraction of plasma relaxation time to use as a floor for the plasma step size control.

• λR = rad dtfac, the fraction of radiation relaxation time to use as a floor for the radiation step size control.

• ηP,target = tiepct

and

LA-UR pending –10– Gosmeyer & Wiggins, 2013

• ηR,target = trepct, the thresholds for relative temperature change used to determine whether the step size should

increase or decrease.

4.3 Comparison to Old Controls

We test our new controls against the old in 12 permutations of the initial conditions for three temperature relaxation

problems. The results are shown in Table 2. We see by comparing wall times that our algorithm is, in fact, faster.

In Figure 3 we see that not only is our algorithm faster, it also still captures the relaxation of the temperatures well.

Table 2: Speed of our new algorithm versus the old for a 10 × 10 grid. Notice that the new control consistently
gives fewer steps and a faster wall time.

OLD NEW
Num Steps Wall Time [s] Num Steps Wall Time [s]

3t relax 01 64 36 29 17
3t relax 02 64 29 33 16
3t relax 03 64 27 26 27
3t relax 04 64 26 26 17
3t relax 05 64 36 33 16
3t relax 06 64 22 26 17
3t relax 07 64 22 27 11
3t relax 08 64 22 32 16
3t relax 09 64 22 32 13
3t relax 10 64 21 27 12
3t relax 11 64 21 27 13
3t relax 12 64 22 32 13
3t eir relax 64 21 64 25
3t ei relax 64 8 64 8

LA-UR pending –11– Gosmeyer & Wiggins, 2013

Figure 3: The code is run first with throttled step sizes. Then we run the code with our algorithm and plot over the
throttled temperatures. The time is on a log scale. We see a very good match between the new control and the old.
The apparent mismatch in the radiation temperature is merely a plotting artifact. Our control (orange) took a long
step and hit the correct solution. Only if one needed to see the initial temperature changes in great detail would

our control be inadequate.

5 Conclusions

We analyzed the 3-T coupling ODEs and solved them in test codes we wrote to investigate alternative step size

controls for xRAGE’s plasma physics model. We looked at xRAGE’s existing initial and subsequent step size

controls, dtev±chg, dt splits, ei-couple, and 20 pct, and discussed their pros and cons. We saw that many lacked

floors or based their step size increments on non-physical parameters. Finally we developed our new control and

implemented it in xRAGE. Our control bases the step sizes on plasma and radiation relaxation times and it contains

a floor. We found that our controls decrease the runtime without sacrificing too much accuracy in resolving the

temperature relaxations.

6 References

Gittings, M., et al. 2008, Comput. Sci. Disc., 1

Jackiewicz, Z. 2009, General Linear Methods for Ordinary Differential Equations, John Wiley & Sons,
38

McClarren, R. G. & Wöhlbier, J. G. 2011, JQSRT, 112, 119-130

Rider, W. J. & Knoll, D. A. 1999, JCPH, 152, 790-795

Wöhlbier, J. G. 2007, LANL Research Note, LA-UR-07-4820

LA-UR pending –12– Gosmeyer & Wiggins, 2013

7 Acknowledgments

Thanks to

ASC Hydro Project for funding.

John Wöhlbier for guidance during the first week.

Scott Runnels for organizing and managing the workshop.

Tina Jenkins for technical support.

Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear

Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.

A NEW TIME STEPSIZE SELECTION SCHEME FOR LOS

ALAMOS NATIONAL LABORATORY’S RADIATION

HYDRODYNAMICS CODE RAGE

BRANDON K. WIGGINS, KATIE GOSMEYER, AND THOMAS MASSER

Abstract. RAGE’s time stepsize selection scheme is discussed and critiqued.
RAGE currently employs very small time steps in its integration which may

not be required for all initial conditions or simulations. In this paper, we

propose an improved algorithm based on three temperature physics and a well-
known time step selection criteria. We offer discussion on additional timestep

selection schemes which may have merit. We briefly treat the strengths of

various operator split methods.

1. Introduction

Los Alamos National Laboratory’s code RAGE (Radiation Adaptive Grid Euler-
ian) is a massively parallel, multidimensional, multi-material, multi-physics code
employed by the laboratory in studies of high energy systems. The code solves
the Euler equations coupled with radiation diffusion equations to predict a given
system’s evolution.

RAGE’s long developmental history has facilitated its somewhat cumbersome
structure. Over the course of the code’s development, a variety of physics pack-
ages have been added in the aim to improve the fidelity of its simulations as well as
expand the set of systems for which RAGE would give good results. In spite of con-
tinued work on the code to improve algorithms and integration techniques, RAGE’s
time stepsize selection scheme (hereafter stepsize selection scheme) remains ineffi-
cient and the implementation of a better scheme might have significant benefits.
Though the code’s structure does not lend itself well to a serious overhaul in this
regard, we motivate and document a new timestep algorithm which may be em-
ployed in three temperature plasma simulations to a more efficient effect. We will
also briefly discuss the stability and other merits of various operator split methods
in connection with the three temperature coupling equations.

1.1. The Current Scheme. RAGE integrates its entire computational domain
with a single timestep. In the process of determining its next stepsize, the code
gathers recommendations from all of its cells and from the collection of its physics
packages. Once the minimum stepsize is determined, the entire system is integrated
at this time stepsize.

A weakness in the current time stepping scheme is obvious in its default three
temperature physics initial stepsize recommendation. By default, the code em-
ploys a “3tFORCE” option which constrains the initial stepsize to 10−14 seconds
regardless of the nature of the initial conditions. The code’s “rad zero” option
recommends an initial timesize of ∆xmin/(5c) where ∆x is the dimension of the
smallest cell and c is the speed of light. After the code gathers recommendations

1

2 BRANDON K. WIGGINS, KATIE GOSMEYER, AND THOMAS MASSER

for the size of the first timestep, it then divides the smallest recommendation by
10 for no apparent reason other than for “good measure.”

Inefficiencies further arise in stepsize controls for subsequent timesteps. The
“20pct” option guarantees that the stepsize for a subsequent cycle will not get larger
than 1.20 times the stepsize of the previous timestep. This stipulation, combined
with very small initial stepsizes frequently result in simulations where the code’s
stepsize is constrained entirely by seemingly ad hoc criteria instead of relying on
underlying physics to recommend efficient stepsizes. It could be mentioned here
that the code’s only three temperature plasma time stepsize selection scheme based
upon three temperature physics “3t tsc” is, by default, turned off. An additional
stepsize recommendation based on the change in electron temperatures due to the
radiation coupling (“dt splits”) is also not employed.

The authors emphasize that the time stepsize selection scheme described above
works, but the implementation lacks efficiency and elegance. During the course of
this paper, we will introduce a new timestep selection scheme which may be used
in a variety of applications.

2. Time Stepsize Selection Schemes

The complete set of partial differential equations which RAGE seeks to solve
which model electron-ion hydrodynamics and radiation diffusion for a three tem-
perature plasma is

∂

∂t
ρ+∇ · ρu = 0

∂

∂t
ρu +∇ · (ρu⊗ u + Pe + Pi) +

1

3
∇Er = 0

∂

∂t
ρei +∇ · (ρeiu) +∇ · qi + Pi : ∇u = γei(Te − Ti) + Ṡi

∂

∂t
ρee +∇ · (ρeeu) +∇ · qe + Pe : ∇u = γei(Ti − Te) + cσa(Er − at4e) + Ṡe

∂

∂t
ρE +∇ · [(ρE|+ P) · u] +∇ · (qe + qi) = cσa(Er − aT 4

e)− 1

3
u · ∇Er + Ṡi + Ṡe

∂

∂t
Er +

4

3
∇ · (uEr)−∇ · (κ∇Er) = −cσa(Er − aT 4

e) +
1

3
u · ∇Er

where ρ is density, u is fluid velocity, P = Pe + Pi is the pressure tensor, ej is
the specific heat for the jth constituent, Tj is temperature, γie is the electron-
ion coupling relation, qj are heat fluxes, σa is the absorption opacity, Er is the
frequency averaged energy in the radiation field and κ is the radiation diffusion
coefficient.

In the one dimensional case, neglecting source terms and spatial dependence,
and considering only the relaxation of the temperatures of the various constituents
allows us to reduce these equations to

∂Er
∂t

= cσa(aT 4
e − Er)(2.1)

∂ρee
∂t

= γei(Ti − Te)− cσa(aT 4
e − Er)(2.2)

∂ρei
∂t

= γei(Te − Ti).(2.3)

NEW STEPSIZE SELECTION SCHEME FOR RAGE 3

Because of the simplifications just mentioned, these equations describe the time
evolution of the equilibration between the respective energies of the system’s con-
stituents (that is, at late times, we expect that the temperatures will equilibrate to
some final Ef). RAGE’s existing structure forbids an easy implementation of a fully
implicit scheme. For part of the integration, RAGE instead uses a semi-implicit,
operator split scheme on a linearized version of (2.1-2.3) with nonlinearities lagged
or iterated. Numerous linearizations are possible. We consider

∂Tr
∂t

=
Te − Tr

2τR
(2.4)

∂Te
∂t

= f2
Tr − Te

2τR
+ f1

Ti − Te
2τP

(2.5)

∂Ti
∂t

=
Te − Ti

2τP
,(2.6)

where τP =
ρCv,i

2γei
, τR = 1

2cσ̂a
, f1 =

Cv,i

Cv,e
, f2 =

4aT 3
r

ρCv,e
and we have used Er = aT 4

r .

For the sake of this analysis, we will treat each of these coefficients as constants in
consistency with RAGE’s semi-implicit operator split integration scheme. If this
system is represented in matrix form, i.e.

∂

∂t
x = Ax,

for x ∈ R3 and A ∈ R3 × R3, then

A =

 −
1

2τR
1

2τR
0

f2
2τR

−
(
f2
2τr

+ f1
2τP

)
f1
2τP

0 1
2τP

− 1
2τP

 ,

which has non-trivial eigenvalues

λj = −
τP + f2τP + τR + f1τR ±

√
(τP + f2τP + τR + f1τR)2 − 4(τP τR)(1 + f1 + f2)

4τP τR
.

Remark 1. The nontrivial eigenvalues λj are real, distinct and negative.

The proof appears in the appendix. We are now prepared for

Definition 1. If

τj = − 1

λj
,

then we say that τj is the relaxation time associated with eigenvalue λj.

Remark 2. Note that, because of the validity of Remark 1, τj ∈ R+.

We might initially feel uncomfortable with the above definition as the equilibra-
tion of the three temperatures which we have described is ultimately non-linear
and not precisely exponential as we would anticipate if our coefficients τP , τR, f1, f2
were actually constant. The quantity τj is still valuable, however, in providing an
instantaneous timescale for the system. The reader is also reminded that the τj ’s
are themselves functions of the three temperature vector x. Our goal is to employ
these relaxation times in the selection of a time stepsize. It may be helpful to
demonstrate the merits of utilizing relaxation times as timescales for the system.
To motivate our discussion, we introduce the concept of stiffness.

4 BRANDON K. WIGGINS, KATIE GOSMEYER, AND THOMAS MASSER

2.1. Criteria for Stiffness. In general, stiffness is a difficult property of ODEs to
define. In our case, it is appropriate to quantify stiffness with

Definition 2. If the quantity ∣∣∣∣λλ
∣∣∣∣ ,

where λ and λ are the largest and smallest eigenvalues of the system respectively,
becomes large we say that the system of ODEs has become stiff.

Clearly Definition 2 cannot apply to all systems of ODEs (some obviously stiff
systems of equations contain only a single eigenvalue), but the definition is a safe
one for our purposes. The ratio effectively measures the difference in timescales of
various relaxing components of the system, a common signature of stiff systems.
As the ratio becomes large, the system is relaxing on two very different timescales
and care must be taken to ensure proper time stepsize selection both to resolve the
rapid relaxation sufficiently and to integrate the equations efficiently.

In our particular case∣∣∣∣λλ
∣∣∣∣ =

τP + f2τP + τR + f1τR +
√

(τP + f2τP + τR + f1τR)2 − 4(τP τR)(1 + f1 + f2)

τP + f2τP + τR + f1τR −
√

(τP + f2τP + τR + f1τR)2 − 4(τP τR)(1 + f1 + f2)
,

which becomes large for any of the following cases:

• τP → 0,∞,
• τR → 0,∞,
• f1, f2 →∞.

We omit the proof. Depending on the forms chosen for γe,i and Cv,e, Cv,i, these
conditions become equivalent to large temperature differences between the radiation
and electrons or the electrons and ions.

It has been well-established in the literature that substantially stiff systems re-
quire very small timesteps to keep integration errors within tolerance. It can be
shown that τj → 0 with diminishing τP and τR as well as f1, f2 →∞, which would
be a desirable property of a time stepsize selection scheme.

2.2. The New Scheme. The time stepsize selection scheme we have implemented
in RAGE is

∆tn+1
R = max

{
λRτR,min

j

[
∆tn

(
ηtarget,R

ηj

)1/2
]}

,

and

∆tn+1
P = max

{
λP τP ,min

j

[
∆tn

(
ηtarget,P

ηj

)1/2
]}

,

with

ηj =
|Tnj − T

n+1
j |

Tnj
,

and j ∈ {i, e, r}. The quantity minj

[
∆told

(
ηtarget,p

ηj

)1/2]
is a well-established

time step size control from the literature (see e.g. Knoll, et al. 2001, their equation
11), with ηtarget,p a carefully chosen constant (p ∈ {P,R}). The effect of this
scheme is to enforce a lower bound on the stepsize based on the relaxation times of
the couplings. These time stepsize recommendations are calculated respectively the

NEW STEPSIZE SELECTION SCHEME FOR RAGE 5

Figure 1. Integration results for both the old and new stepsize
selection scheme for the 3t eir relax.test problem. Differences in
integration are barely discernable by eye. A color version of this
figure appears in the electronic copy. Image generated with xshow.

radiation and plasma sections of the code. This timestep option may be activated by
using “improved tsc = .true.” in a RAGE input deck. This option also turns off the
“3tFORCE” and “rad zero” initial time stepsize recommendations in favor for an
initial stepsize recommendation based on the relaxation times. The algorithm has
four adjustable parameters, λR, λP , ηtarget,R, ηtarget,P which may also be specified
in the input deck.

We tested the speed of the newer algorithm, expecting that significantly larger
timesteps would be employed in the integration. We constructed an ensemble of
relaxation problems to probe the efficiency of the algorithm in different initial con-
ditions. The magnitudes of the initial temperatures were permuted across the test
problems with varying degrees of stiffness. In this way, we hoped to sufficiently sam-
ple the space the all possible initial conditions. Problems were run on a 300× 300
domain and 16 processors on Moonlight. The wall times and number of cycles
(steps) employed by the old and our new method appear in Table 1. We note that
for the vast majority of relaxation problems, number of cycles and wall times are
diminished by a factor of 1/2 in the new method.

The integration results differed from the results of the RAGE gold standard
for the test problem. These differences were barely discernible by eye when the
two integrations are plotted on top of each other (see Figure 1). We assert that
for a large number of three temperature plasma problems, the improved timestep
scheme will give appropriate results at a fraction of the wall time without sacrificing
significant physics.

6 BRANDON K. WIGGINS, KATIE GOSMEYER, AND THOMAS MASSER

Old Timestep Scheme New 3T Stepsize Controls

Test Problem Cycles Wall Time (s) Cycles Wall Time (s)

3t ei relax 64 56 64 56
3t eir relax 64 16 29 10
3t relax 01 64 115 29 54
3t relax 02 64 124 33 62
3t relax 03 64 113 26 48
3t relax 04 64 124 26 53
3t relax 05 64 122 33 59
3t relax 06 64 119 29 53
3t relax 07 64 107 27 49
3t relax 08 64 111 32 58
3t relax 09 64 113 32 57
3t relax 10 64 117 27 51
3t relax 11 64 117 27 51
3t relax 12 64 112 32 59

Table 1. Efficiency comparisons between the old stepsize scheme
and our recently implemented stepsize controls. The new scheme
efficiently integrates in roughly half the number of cycles and wall
time in nearly every test case in relax.suite. Test problems were
run on Moonlight on 16 processors each and on 300 × 300 grids.

More elaborate time step size selection schemes were considered which would
select even more conservative time steps while still circumventing RAGE’s tendency
to select unnecessarily small step sizes. RAGE’s complex structure prevented very
involved implementation, though we are confident that other step size controls could
be installed with additional time. For the remainder of this report, we will discuss
some additional ideas which might be of value to RAGE developers.

2.3. A Suggested Time Step Size Selection Scheme. We motivate our dis-
cussion by introducing the toy system

∂Tr
∂t

=
Te − Tr

2τR
,(2.7)

∂Te
∂t

=
Tr − Te

2τR
+
Ti − Te

2τP
,(2.8)

∂Ti
∂t

=
Te − Ti

2τP
,(2.9)

which has two distinct eigenvalues

λ′j =
−(τR + τP)±

√
(τR + τP)2 − 3τRτP

2τRτP
,

where τP and τR are the relaxation times for the ion and radiation coupling re-
spectively and we have included a prime on λj to distinguish them for the afore-
mentioned eigenvalues. The eigenvalues λ′j correspond to relaxation times for the

NEW STEPSIZE SELECTION SCHEME FOR RAGE 7

global system via

τ ′j = − 1

λ′j

We say τ ′− = minj{τ ′j} is the minimum relaxation time for the entire system. We
are now prepared to make an important claim.

Claim 1. The global, minimum relaxation time τ ′− is less than the individual re-
laxation times for the coupled relaxation ships within the system, i.e.

τ ′− < τR

and

τ ′− < τP

for every τ ′−, τP , τR ∈ R+.

Proof. The validity of this claim may be demonstrated by means of a simple alge-
braic argument. Because τP , τR ∈ R+ we know that

τRτP > 0⇒ 3τRτP > 0⇒ 2τRτP − 3τRτP > −2τRτP .

Adding τ2R + τ2P to both sides preserves the inequality yielding (after selective fac-
toring)

(2.10) (τR + τP)2 − 3τRτP > (τP − τR)2 ⇒
√

(τR + τP)2 − 3τRτP > τP − τR,
because of the monotone nature of the square root function. It is now easy to see
that

τR + τP +
√

(τR + τP)2 − 3τRτP > 2τP ⇒
2τRτP

τR + τP +
√

(τR + τP)2 − 3τRτP
< τR,

or that

τ ′− =
1

λ−
=

2τRτP

τR + τP +
√

(τR + τP)2 − 3τRτP
< τR.

Because τ ′− is symmetric in τR and τP , one can easily show τ ′− < τP by exploiting
the fact that τ2R − 2τRτP + τ2P may also be factored like (τR − τP)2 in addition to
the factoring which appears in (2.10). �

This property of this toy system is also evidenced in our linearized equations
(2.4-6). The (approximate) Jacobians of the individual couplings for this system
are

L1 =

(
− 1

2τR
1

2τR
f2
2τR

− f2
2τR

)
,

L2 =

(
f1
2τP

− f1
2τP

− 1
2τP

1
2τP

)
,

where L1 and L2 are the approximate Jacobians for the radiative and plasma cou-
pling steps respectively. Each Jacobian has one non-trivial eigenvalue which corre-
spond to a relaxation time. These are

τrad =
2τR

1 + f2
, τplas =

2τP
1 + f1

.

We note that τP and τR are no longer the relaxation times of the system but
τrad → τR and τplas → τP when f1, f2 → 1.

8 BRANDON K. WIGGINS, KATIE GOSMEYER, AND THOMAS MASSER

Claim 2. The minimum relaxation time of the entire system τ− is smaller than

the relaxation times of the individual components
(

2τR
1+f2

, 2τP
1+f1

)
.

Proof. We first prove that τ− <
2τR
1+f2

. Because f1, f2, τP , τR ∈ R+, it is clear that

4f1f2τP τR > 0.

We now add and subtract φ = τ2R + 2f1τ
2
R + f21 τ

2
R + τ2P + 2f2τ

2
P + f22 τ

2
P − 2τP τR −

2f1τP τR − 2f2τP τR from the LHS. The resulting inequality can be shown to be
equivalent to

(τP + f2τP + τR + f1τR)2 − 4(τP τR)(1 + f1 + f2)− ((1 + f2)τP − τR(1 + f2))2 > 0.

Moving the last term on the LHS to the RHS and taking the square root implies
that
(2.11)√

(τP + f2τP + τR + f1τR)2 − 4(τP τR)(1 + f1 + f2) > |(1 + f2)τP − τR(1 + f2)|.

We can prove that τ− <
2τR
1+f2

by considering the case in which

|(1 + f2)τP − τR(1 + f2)| = (1 + f2)τP − τR(1 + f2).

In this case, (2.11) can be shown to be equivalent to√
(τP + f2τP + τR + f1τR)2 − 4(τP τR)(1 + f1 + f2) > (2− 1)(1 + f2)τP − τR(1 + f2).

Rearranging gives

τP (1+f2)+τR(1+f1)+
√

(τP + f2τP + τR + f1τR)2 − 4(τP τR)(1 + f1 + f2) > 2(1+f2)τP ,

which implies that

4τP τR

τP (1 + f2) + τR(1 + f1) +
√

(τP + f2τP + τR + f1τR)2 − 4(τP τR)(1 + f1 + f2)
<

2τR
1 + f2

,

or that

τ− <
2τR

1 + f2
.

We can next show that τ− <
2τP
1+f1

by considering the remaining case

|(1 + f2)τP − τR(1 + f2)| = −(1 + f2)τP + τR(1 + f2).

It may be shown that (2.11) then becomes√
(τP + f2τP + τR + f1τR)2 − 4(τP τR)(1 + f1 + f2) > −(1 + f2)τP + (2− 1)τR(1 + f2).

Rearranging the expression gives

τP (1+f2)+τR(1+f1)+
√

(τP + f2τP + τR + f1τR)2 − 4(τP τR)(1 + f1 + f2) > 2τR(1+f2),

which is to say that

4τP τR

τP (1 + f2) + τR(1 + f1) +
√

(τP + f2τP + τR + f1τR)2 − 4(τP τR)(1 + f1 + f2)
<

2τP
1 + f1

,

and that

τ− <
2τP

1 + f1
,

as claimed. �

NEW STEPSIZE SELECTION SCHEME FOR RAGE 9

The above claim demonstrates the advantage of using τ− over the individual
relaxation times for the system to determine the next step size. Though the claim
is instructive, it may be of interest to the reader to know under what conditions
τ− < τP , τR, quantities which are computed during RAGE’s integration. This
would require simplifying the inequality

4τP τR

τP (1 + f2) + τR(1 + f1) +
√

(τP + f2τP + τR + f1τR)2 − 4(τP τR)(1 + f1 + f2)
< τP .

After routine manipulations, we find that√
(τP + f2τP + τR + f1τR)2 − 4(τP τR)(1 + f1 + f2) > 3τR − τP (1 + f2)− f1τR,

which is equivalent to requiring{
f1 >

τP+f2τP−2τR
τP−2τR if τP 6= 2τR

f2 >
−τP+2τR

τP
if τP = 2τR

.

A similar routine may be carried out to find constraints on f1, f2 to achieve
τ− < τR. We need {

f2 <
2τP−τR−f1τR

2τP−τR if τP 6= τR/2

f1 >
2τP−τR
τR

if τP = τR/2
.

These requirements describe a somewhat complicated region in a 4-D parameter
space. For concreteness sake, we present for your consideration

Example 1. Note that if τP = τR = τ , we have

τ+ =
4τ2

2τ
= 2τ,

and

τ− =
2τ

1 + f1 + f2
,

which is less than the relaxation time of the individual elements of the system if
f1 + f2 > 1.

It would appear that it would be advantageous to have a time stepsize selection
scheme which is based on the global relaxation times for the system τ− and τ+ even
over a scheme based τR and τP as we have recently implemented. Our suggested
timestep scheme is

∆tnew = min

{
max

[
λτ−,min

j

[
∆told

(
ηtarget,R

ηj

)1/2
]]

, ατ+

}
,

where λ, α are carefully chosen constants. Though this algorithm has not been
tested directly in the RAGE environment, we have demonstrated some of its mer-
its externally in a code which we wrote (iSILDR: Semi-implicit Integrator of the
Linearized Differential equations of RAGE) to mimic RAGE’s integration scheme.
The details of the integration algorithm may be found in the Appendix. We did
100 integrations with this algorithm with each initial temperature T0,j taken from
a uniform distribution from 0 to 10. In this way, we hoped to adequately sample
the space of all possible initial conditions. The radiation-electron coupling was
set stronger than the ion-electron coupling. A typical integration from these runs
appears in Figure 2.

10 BRANDON K. WIGGINS, KATIE GOSMEYER, AND THOMAS MASSER

Figure 2. (Left) Minimum Relaxation Time τ− is plotted as a
solid line. The dotted line indicates the timestep selected by the
algorithm. Each quantity is represented here as a function of time
t. (Right) Temperatures as a function of time. Markers represent
data points computed in the discrete integration. Note that the
time stepping algorithm exhibits the pleasing property that ∆t gets
larger as the system relaxes (i.e. markers get farther apart).

Figure 3. A scenario where our time stepping scheme appears to
integrate inefficiently. Note that if the strongly coupled pair starts
off close to each other, the simulation will choose an appropriately
small timestep to resolve the quicker relaxation. The integration,
however, grinds on for a much longer time than we would like
(possibly because of the size of ηtarget).

We note that the integration scheme possesses the pleasing property that ∆t
becomes large as the system equilibrates. Note that the user has the ability to
adjust the coarseness of the integration by setting ηtarget.

2.4. A Timestepping Scheme for Stiff Scenarios. Though the above method
works well for a variety of circumstances, the scheme we have just suggested expe-
riences difficulties with initial conditions which cause the equations to become stiff.
This is particularly evident in the integration shown in Figure 3. The integration
appears to grind on far longer through an essentially featureless relaxation. One

NEW STEPSIZE SELECTION SCHEME FOR RAGE 11

Figure 4. Comparison of (1.1) (below) and the adjusted algo-
rithm (see section 2) (above) for identical initial conditions. The
two schemes employ the same number of integration steps though
the adjusted algorithm integrates the long, features, final relax-
ation much more efficiently. Note that within 100 timesteps the
algorithm in (1.1) will not make it past about 1.1 time units. The
adjusted algorithm integrates well beyond 5 time units with the
same number of steps.

might attempt to adjust ηtarget to compensate for the slow integration, and such
a solution certainly has merit. We sought, however, a scheme which would work
for general initial conditions, requiring no a priori knowledge from the user of the
stiffness of the equations.

We noticed that for virtually all of the simulations τ− > minj

[
∆told

(
ηtarget

ηj

)1/2]
for small t. We added the following “if” statement following the computation of

the timestep: If τ− < minj

[
∆told

(
ηtarget

ηj

)1/2]
then ∆t = ατ+. I set α to 1.0. The

results of this simple implementation follow in Figures 4 and 5.
It appears that when the recommended timestep exceeds the minimum relaxation

time of the system (i.e. (1.1) gives ∆t 6= τ−), the relaxing system may be safely
integrated with a significantly larger timestep than that recommended by our initial
scheme. In this experiment, we have used a timestep which is on the order of the
maximum relaxation time for the system. While this claim will need to be verified
with appropriate error analysis and though non-linearities are not fully converged

12 BRANDON K. WIGGINS, KATIE GOSMEYER, AND THOMAS MASSER

Figure 5. Same as Figure 4. Notice that the new adjusted scheme
picks up speed only after complex features in the system have been
resolved (i.e. after the “stiffer” coupling has relaxed).

in our integration scheme, it might be worthy of note that in every experiment
the “accelerated” integration in this new scheme takes place only following exotic
features (maxima, minima, etc.).

We make one additional observation.

Remark 3. In a relaxing system, the usual stepsize selection scheme (∆tn+1 =

∆tn
(
ηtarget

η

)1/2
, hereafter the “usual” stepsize scheme) becomes greater than the

minimum relaxation time for the system τ−, the stiffer coupling has relaxed. When
this same stepsize criteria recommends larger stepsizes than the maximum relax-
ation time τ+, the entire system has relaxed.

This observation has some nice implications. Because there are only three tem-
peratures relaxing, as soon as the usual timestep exceeds τ−, all local extrema have
been integrated and a larger step size may be used (on the order of τ+). As soon
as the usual stepsize scheme recommends stepsizes larger than τ+, very large step
sizes may be employed pending no possibility of sourcing. This is also convenient
as the relaxation times and the usual scheme can together operate as a type of
indicator that specific events have taken place in the evolution of the system.

The reader may well wonder if the usual stepsize recommendation exceeding the
minimum relaxation time actually signals a special benchmark in the relaxation
of the system. To test this idea, we carried out 2000 integrations with iSILDR
with initial temperatures randomly selected from uniform distributions. For each

NEW STEPSIZE SELECTION SCHEME FOR RAGE 13

set of initial conditions, we varied λ on the interval [0, 2.0]. Because λ represents
a threshold which the recommendation of the usual stepsize scheme must exceed,
larger values of λ correspond to later times at which the integration will make
the switch between timesteps on the order of the minimum relaxation time τ−
and steps close to τ+, the maximum relaxation time. The results of this error
analysis are shown in Figure 6. Lines higher in L2 error norms correspond to sets
of integrations carried out on successively stiffer initial conditions. This increase in
error is thought to largely be due to the fixed order of the operator split and the
unconverged nonlinearities in our semi-implicit scheme.

We note that error drops substantially as the “jump-off point” λ becomes larger
but that most improvement in L2 norm of the error is gained by the time the usual
scheme recommends stepsizes which exceed about 1.0 minimum relaxation time.
Figure 6 illustrates that little benefit is gained by integrating with very small time
stepsizes after this point (i.e. after the stiffer coupling has relaxed). Averages across
all levels of stiffness indicate that over 95% of the improvement in error is already
gained at this point. Future time step size controls for RAGE could exploit this
fact in step size selection.

3. Operator Split Methods

We first begin with

Claim 3. An operator split algorithm composed of two fully implicit schemes is
unconditionally stable.

A proof appears in the appendix. While this may offer comfort for the use of
operator split methods with fully implicit substeps, it can be shown that issues with
non-converged nonlinearities (as are present in our semi-implicit scheme) are atten-
uated by operator splitting. Notwithstanding the former argument, integrating the
three temperature equations without operator split methods would be optimal.

3.1. Results from Runs Comparing Split Methods. Though operator split
methods have been studied in general, and though it might appear that higher order
split methods are always advantageous, the true merits of an operator split method
rely heavily on the nature of the problem at hand (see Kozlov et. al. 2003). In this
subsection, we seek to determine the method best suited for the three temperature
relaxation problem.

Five different integration schemes were employed on a stiff problem simultane-
ously in iSILDR: both variations of Yanenko (equivalently “Lie” in this case) and
Strang splitting in addition to a throttled integration for error calculation pur-
poses. The equations were stiff in the electron-ion coupling. Our purpose in this
experiment was to ascertain the relative integrity of split methods in a stiff sys-
tem in tracing out a local extremum. The experimental results for the electron
temperature Te are displayed in Figure 7.

Somewhat surprisingly, first order Lie splitting which performed the stiff integra-
tion first was more accurate than all other integration schemes, including those of
higher order. In each case, integrating the stiff coupling first provides better results.
In an attempt to investigate this more fully, I carried out 100 additional integra-
tions with varying levels of stiffness (see Figure 8). For clarity only the electron
temperature is shown though similar plots might be generated for the other plasma

14 BRANDON K. WIGGINS, KATIE GOSMEYER, AND THOMAS MASSER

Figure 6. L2 norm of the error of integrations as a function of the
fraction of the minimum relaxation time the Ryder-Knoll timestep
must be greater than before step size is automatically chosen to
be the larger relaxation time. Each diamond represents the aver-
age L2 norm of the error for 50 integrations. Diamonds connected
by lines represent runs which shared the same set of initial condi-
tions. Higher lines on the plot represent successively stiffer initial
conditions. The dotted vertical line indicates simulations which
“jumped” to larger time stepsizes after exactly 1.0 relaxation time.
On average, 95.7% of the improvement in error gained by waiting to
jump until the Ryder-Knoll timestep becomes very large is gained
before λ = 1.0. λ = 1.0 appears to be an appropriate place to
“jump” regardless of the stiffness of the system.

constituents. It appears that for this test problem, integrating the stiff section first
consistently produces better results over a variety of stiff initial conditions.

RAGE could benefit from an implementation where the stiffer component is al-
ways intergrated first. The current operator split method in RAGE is actually
fortuitous as the relaxation times for the plasma coupling is generally much smaller
than the relaxation times for the radiation. This is accomodated well by RAGE’s
design in always integrating the plasma coupling before the radiation. In circum-
stances where this trend does not hold, integrating the stiffer coupling first would
be beneficial.

Error analyses were also carried out for Strang splitting. Though Strang splitting
did not offer the best results out of the methods considered, it should be noted that
Strang splitting with the stiff component integrated between half steps of non-stiff
components faired best over a variety of stiff initial conditions.

NEW STEPSIZE SELECTION SCHEME FOR RAGE 15

Figure 7. Five separate integrations of electron temperature in
a 3-T system with a stiff ion-electron coupling. The throttled
timestep integration is the most accurate of those depicted.

4. Conclusion

In this report, we have outlined some of the time step size selection scheme
difficulties in the RAGE code and have outlined our improvements to it. We have
reduced wall time for large, simple three temperature relaxation problems by a
factor of 1/2 without seriously compromising the accuracy of the integration. The
new scheme has four adjustable parameters which can be fine-tuned to meet the
accuracy and speed needs of a given integration.

We have also outlined additional ideas for time step size recommendation based
on the relaxation times for the entire system. We have presented the important
result that the minimum relaxation time for the entire system is smaller than the
relaxation times of the individual couplings. We have also suggested an additional
scheme which might work well for stiff initial conditions, based on our observa-
tion that when a common time step control recommends timesteps larger than the
current minimum relaxation time, it appears to be an indication that the stiffer
coupling has relaxed. We have briefly discussed the merits of different operator
split methods and have recommended Lie Splitting with the stiffer coupling also
integrated first.

Acknowledgements

I would like to thank Katie Gosmeyer for fruitful conversations and for her very
helpful tutoring of me in IDL. A very special thanks is due to our excellent mentor
Tom Masser whose insights guided this work. We are also grateful to Scott Run-
nels for orchestrating the workshop and Tena Jenkins for her help throughout the

16 BRANDON K. WIGGINS, KATIE GOSMEYER, AND THOMAS MASSER

Figure 8. Average Local Errors for two integration methods and
over 100 integrations. The solid line represents Lie Splitting with
the non-stiff component integrated first. The dotted line is Lie
Splitting with the stiff coupling integrated first. Errors for Lie
operator splitting with the stiff component integrated first outper-
form the alternate integration for all levels of stiffness.

summer. We would also like to thank John Wöhlbier for his help at the beginning
of the summer. We also thank Los Alamos National Laboratory for this singular
summer experience. This work was funded by the ASC Hydrodynamics Project.

Appendix

4.1. Proof of the Real, Distinct, Non-negative Nature of the Eigenvalues λj.

Proof. We first show that the eigenvalues are real or that D = (τP +f2τP + τR+f1τR)2−
4(τP τR)(1 + f1 + f2) > 0. Observe that

D = τ2
P + 2f1τ

2
P + f2

1 τ
2
P − 2τP τR − 2f1τP τR − 2f2τP τR

+2f1f2τP τR + τ2
R + 2f2τ

2
R + f2

2 τ
2
R

= (τP + f1τP − τR − f2τR)2 + 3f1f2τP τR > 0

because τP , τR, f2, f1 > 0. Because determinant D > 0, D 6= 0 so the eigenvalues are
distinct.

We next show that the non-trivial eigenvalues λi are negative. It is clear that

λ1 = −
τP + f2τP + τR + f1τR −

√
(τP + f2τP + τR + f1τR)2 − 4(τP τR)(1 + f1 + f2)

4τP τR
< 0

if τP , τR > 0. It is also apparent that√
(τP + f2τP + τR + f1τR)2 − 4(τP τR)(1 + f1 + f2) <

√
(τP + f2τP + τR + f1τR)2

= τP + f2τP + τR + f1τR,

NEW STEPSIZE SELECTION SCHEME FOR RAGE 17

which only holds (again) if all the variables here are positive. It is now clear that

τP + f2τP + τR + f1τR +
√

(τP + f2τP + τR + f1τR)2 − 4(τP τR)(1 + f1 + f2) < 0

which implies that λ2 < 0 as asserted. �

4.2. Algorithm Details for iSILDR. We seek to solve the system

∂Tr
∂t

=
Te − Tr

2τR
,(4.1)

∂Te
∂t

= −f2
Te − Tr

2τR
− f1

Te − Ti
2τP

,(4.2)

∂Ti
∂t

=
Te − Ti

2τP
,(4.3)

in a manner which is consistent will sufficiently mimic RAGE’s integration scheme. RAGE
uses a Lie operator split method and integrates the plasma coupling with a semi-implicit
Euler scheme. Integration of the radiation coupling is more complicated, involving the
iteration of nonlinearities. For the purposes of our experiment, we will use a simple Lie
operator split method with a first order semi-implicit Euler scheme (lagging nonlinear
coefficients).

We now develop the formulae. We can express the above equation set in matrix form:

∂

∂t
T = LT,

where T ∈ R3 and L is the appropriate 3×3 matrix. Because L1 =

 − 1
2τR

1
2τR

0
f2

2τR
− f2

2τR
0

0 0 0


and L2 =

 0 0 0

0 − f1
2τP

f1
2τP

0 1
2τP

− 1
2τP

 are such that L1 + L2 = L we can write the equation

set as
∂

∂t
T = (L1 + L2)T.

We will approximate the radiation step with an implicit method (necessarily lagging the
nonlinear coefficients) with

Tn+1
r − Tnr

∆t
=

1

2τnR

(
Tn+1
e − Tn+1

r

)
,(4.4)

Tn+1
e − Tne

∆t
= − fn2

2τnR

(
Tn+1
e − Tn+1

r

)
,(4.5)

which, solved for Tn+1
r and Tn+1

e , is

Tn+1
r =

∆tTne + ∆tfn2 T
n
r + 2Tnr τR

∆t+ ∆tfn2 + 2τR
,(4.6)

Tn+1
e =

∆tTne + ∆tfn2 T
n
r + 2Tne τR

∆t+ ∆tfn2 + 2τR
.(4.7)

Updating temperatures in the electron-ion coupling step are carried out similarly:

Tn+1
e =

∆tTne + ∆tfn1 T
n
i + 2τnPT

n
e

∆t+ fn1 ∆t+ 2τnP
,(4.8)

Tn+1
i =

∆tTne + ∆tfn1 T
n
i + 2τnPT

n
i

∆t+ fn1 ∆t+ 2τnP
.(4.9)

18 BRANDON K. WIGGINS, KATIE GOSMEYER, AND THOMAS MASSER

We first update coefficients and use

Tn+1 = Tn + ∆t,(4.10)

Tn+1
r =

∆tTne + ∆tfn2 T
n
r + 2Tnr τR

∆t+ ∆tfn2 + 2τR
,(4.11)

T̃ne =
∆tTne + ∆tfn2 T

n
r + 2Tne τR

∆t+ ∆tfn2 + 2τR
,(4.12)

Tn+1
e =

∆tT̃ne + ∆tfn1 T
n
i + 2τnP T̃

n
e

∆t+ fn1 ∆t+ 2τnP
,(4.13)

Tn+1
i =

∆tT̃ne + ∆tfn1 T
n
i + 2τnPT

n
i

∆t+ fn1 ∆t+ 2τnP
.(4.14)

and loop over all time steps.
We require an integration against which we can estimate errors of the foregoing method.

We elected to use a semi-implicit non-operator scheme with a throttled timestep. After
updating the nonlinear coefficients we use

Tn+1
i = C

[
4τP τRT

n
r + ∆t2(Tne + f1T

n
i + f2T

n
r) + 2∆t((1 + f1)τRT

n
r + τP (Tne + f2T

n
r))
]
,

Tn+1
e = C

[
4τP τRT

n
e + ∆t2(Tne + f1T

n
i + f2T

n
r) + 2∆t(τR(Tne + f1T

n
i) + τP (Tne + f2T

n
r))
]
,

Tn+1
r = C

[
4τP τRT

n
i + ∆t2(Tne + f1T

n
i + f2T

n
r) + 2∆t((1 + f2)τPT

n
i + τR(Tne + f1T

n
i))
]
,

with C = ∆t2(1 + f1 + f2) + 4τP τR + 2∆t(τP + f2τP + τR + f1τR), and loop over all steps
n. Errors were calculated using

||error||2 =

√√√√∑n maxj(Tnj − T̂nj)2∑
n T̂

n
j

2
,

where T̂n is the temperature at time step n as derived from the throttled, non-operator
split integration and j ∈ {e, i, r}.

4.3. On the Unconditional Stability of Fully Implicit Operator Split Methods.

Proof. Consider the test system

T ′ = λT,

where λ is a constant. We can quickly write the above equation like

T ′ = (λ1 + λ2)T,

for an appropriate choice of λi. If we were to numerically integrate this problem with
operator splitting (and utilizing an implicit Euler method with each step), we would use

T̃ = (1−∆tλ1)−1Tn(4.15)

Tn+1 = (1−∆tλ2)−1T̃(4.16)

We can eliminate T̃ to find that

Tn+1 = (1−∆tλ2)−1(1−∆tλ1)−1Tn = Φ(∆tλ1,∆tλ2)Tn,

where Φ is the amplification factor. For convergence we require

|Φ(∆tλ1,∆tλ2)| < 1⇒
∣∣∣∣ 1

(1−∆tλ2)(1−∆tλ1)

∣∣∣∣ < 1.

If ∆t→ 1
λi

there will be stability issues. Because ∆t > 0 there is no danger of instability so

long as λ < 0 (as in a relaxation case). Stability issues only arise in the case of exponential
growth (λ > 0). Because

|Φ(∆tλ1,∆tλ2)| < 1, ∀∆t > 0,

NEW STEPSIZE SELECTION SCHEME FOR RAGE 19

we say that Lie operator splitting with implicit Euler substeps is A-stable. Further

lim
∆tλi→∞

|Φ(∆tλ1,∆tλ2)| = lim
∆tλi→∞

∣∣∣∣ 1

(1−∆tλ2)(1−∆tλ1)

∣∣∣∣ = 0,

so the method is also L-stable. �

References

Baldwin, C. Brown, P., Falgout, R., Graziani, R., Jones, J. 1999. Journal of Com-
putational Physics. 154: 1-40.

Kozlov, R., Kvaernφ, A., Owren, B. 2004. Journal of Computational Physics
195:576-593.

Masser, Thomas. 3T Timestep Controls Research Note. 2012. LA-UR Pending.
McClarren, R., Wöhlbier, J. 2011. Journal of Quantitative Spectroscopy and Ra-

diative Transfer. 112: 119-130.
Knoll, D. A. Rider, W. J., Olson, G.L. 2001. Journal of Quantitative Spectroscopy

and Radiative Transfer. 70: 25-36.
Wöhlbier, J. 2007. 3T model equations and operator split. LANL Research Note.

LA-UR-07-4820.

2013 Computational Physics Student Summer Workshop: Final Reports

New Algorithms for GPUs

(Bob Robey, mentor)

LA-UR-13-26528
Approved for public release; distribution is unlimited.

Title: A GPU Accelerated Discontinuous Galerkin Scheme for Advection

Author(s): Jibben, Zechariah J.

Intended for: Computational Physics Summer Workshop, 2013-06-10/2013-08-16 (Los
Alamos, New Mexico, United States)
Report

Issued: 2013-08-19

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National
Security, LLC for the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.
By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to
publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.
Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the
U.S. Departmentof Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish;
as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

A GPU A D G
S  A

Zechariah J. Jibben *†

August 14, 2013

A

is report describes the algorithms developed in OpenCL for solving a discontinuous Galerkin scheme to the
linear advection equation used in interface transport. A sparse data structure was implemented to take full advantage
of parallelism on the GPU, offering a final speedup ranging from 2-60x for a Nvidia Tesla C2050 vs. a 1.9GHz AMD
Opteron 6168 running in serial. e algorithms take advantage of coalescence in global memory, as well as avoiding
thread divergence.

1Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the
U.S. Department of Energy under contract DE-AC52-06NA25396.

2Supported by NSF grant NSF-CBET-1054272.
*Department of Mechanical and Aerospace Engineering, Arizona State University, Tempe, Arizona, 85287, E-mail: zjibben@asu.edu
†XCP-4 Methods and Algorithms Group, Los Alamos National Laboratory

mailto:zjibben@asu.edu

1 Introduction

1.1 Motivation

A pressing problem in engineering is the modeling of fluid interactions involving an immiscible interface. For
instance, inside a jet turbine where fuel is dispersed and atomized into air, the quality of the resulting mixture has
a direct impact on the overall performance of the engine and pollutant production. Unfortunately, experiments are
difficult or impossible to perform at operating conditions, simply because optical access is obstructed by engine
structure and the “haze” of liquid droplets surrounds interesting structures. Furthermore, there is no known way of
solving the nonlinear governing equations analytically. erefore, numerical simulations become vital to the design
process as well as to deepening our understanding of the physics, and having a high order solver becomes essential
to accurately representing the material interface.

Here, the approach to this problem and benefit of utilizing GPUs to handle numerical algorithms is described.
Here, sparsity becomes a noteworthy issue. Taking advantage of sparse data structures can be quite beneficial in
CPU code. In a GPU implementation, however, it becomes crucial.

is paper begins by describing the problem in question, followed by a basic overview of the level set solution
method and discontinuous Galerkin (DG) numerical method. e discussion of the scheme will involve noting the
sparse nature of the system, followed by the GPU implementation (including some tricks that help in the process).
Finally, results for the overall speedup are shown and discussed.

1.2 Governing Equations

Herrmann [3] gives a good overview for the governing equations of a fluid interaction involving immiscible
interfaces. ese are the Navier-Stokes’ equations, along with a surface tension term 𝑻𝜎 that is nonzero only at the
interface location 𝒙𝑓 .

𝜕𝒖
𝜕𝑡 + 𝒖 ⋅ ∇𝒖 = −1

𝜌∇𝑝 + 1
𝜌∇ ⋅ (𝜇 (∇𝒖 + ∇T𝒖)) + 𝒈 + 1

𝜌𝑻𝜎 (1)

𝑻𝜎 (𝒙) = 𝜎𝜅𝛿(𝒙 − 𝒙𝑓) 𝒏̂ (2)

Here, 𝒖 is the velocity, 𝜌 is density, 𝑝 is pressure, 𝜇 is dynamic viscosity, 𝒈 is the gravitational body force, 𝜎 is the
surface tension constant, 𝜅 is the local surface curvature, and 𝒏̂ is the local surface normal. As a result of this coupling
from surface tension, an accurate method for tracking the phase interface location in such a way that allows us to
also calculate the local curvature and normal at high order is vital. e level set method is selected to accomplish
this goal.

1.3 e Level Set Method

ere are several approaches to interface tracking, volume of fluid methods (VOF) and level set methods being
the most common. e VOF approach has the benefit of discretely conserving mass, while traditional level sets
do not share this property. On the other hand, level sets have the benefit of high order accuracy and having the
ability to compute high order normals and curvature. Recently, Olsson and Kreiss [7], Olsson et al. [8] developed
a conservative level set method that treats the level set scalar as a conserved variable, greatly improving the mass
conservation of the method.

e concept of level sets is to model the fluid interface, shown in Fig. 1, as the 0.5-isosurface of some scalar
function 𝐺(𝒙, 𝑡). en, 𝐺 > 0.5 on one side of the interface and 𝐺 < 0.5 on the other. e 0.5-isosurface is then
transported via the advection equation, which is found from the fact that the material derivative of 𝐺(𝒙𝑓) is equal
to zero. For incompressible flows, this can be wrien in conservative form as

𝜕𝐺
𝜕𝑡 + ∇ ⋅ (𝐺𝒖) = 0. (3)

Combining this approach with an arbitrary order discontinuous Galerkin method further improves the accuracy and
mass conservation of level set methods.

1

(a) Fluid Interface (b) Finite Volume (c) Discontinuous Galerkin

Figure 1: Interface Discretization

2 e Discontinuous Galerkin Method
e numerical approach used is an arbitrary-order discontinuous Galerkin method, as described by Cockburn

and Shu [1]. It can be thought of as a generalization of the finite volume method, which assigns average values of
the solution variables to each cell. e discontinuous Galerkin method, on the other hand, allows sub-cell variation
by performing a spectral decomposition of the solution variables in each cell. at is, we project 𝐺 and 𝒖 into the
basis {𝑏𝑖} as

𝐺ic =
𝑁g

∑
𝑖=1

𝑔𝑖,ic𝑏𝑖, 𝒖ic =
𝑁u

∑
𝑖=1

𝒖̂𝑖,ic𝑏𝑖, (4)

where the series is truncated at 𝑁𝑔 and 𝑁𝑢 terms for 𝐺 and 𝒖, respectively (however, for this paper, we take 𝑁𝑢 =
𝑁𝑔). In this sense, a finite volume method is equivalent to a discontinuous Galerkin method with 𝑁𝑔 = 𝑁𝑢 = 1.
e normalized Legendre polynomial basis is selected for their orthonormality property, and they are constructed
by performing Gram-Schmidt orthonormalization on the space of 3D monomials 𝑥𝛼𝑦𝛽𝑧𝛾 . en, for a maximum
monomial degree 𝑘, we find 𝑁𝑔 = (𝑘 + 1)3. It has been shown by LeSaint and Raviart [5] that this method can then
formally achieve a 𝑘 + 1 convergence rate.

ese expansions are then substituted into Eq. (3). By performing an inner product with 𝑏𝑛 (integrate over the cell
domain 𝛺), taking advantage of orthonormality, and using the divergence theorem, we arrive at a system of coupled
ordinary differential equations describing the time evolution the coefficients 𝑔𝑛 for all cells. A simple upwind flux
is used to handle integration along cell interfaces, and a 𝑘 + 1 order Runge-Kua (RK) time stepping mechanism is
used.

d𝑔𝑛,ic
d𝑡 = 𝑢𝑗

𝑘,ic𝑔𝑖,ic ∫𝛺
𝑏𝑘𝑏𝑖

𝜕𝑏𝑛
𝜕𝑥𝑗

d𝑉 + 𝑢𝑗,up
𝑘,ic 𝑔up

𝑖,ic ∫𝜕𝛺
𝑁𝑗𝑏up𝑘 𝑏up

𝑖 𝑏𝑛 d𝑆 (5)

Note that the two integrals are entirely in terms of our basis functions and the cell domain. ese can therefore
be pre-computed analytically using symbolic soware such as Mathematica, Maple, or SymPy, and stored in a 3D
array for reference later. is avoids the use of quadrature, saving computation time. Furthermore, note that the
orthogonality of the Legendre polynomial basis produces sparse arrays (see Table 1 and Fig. 2). For reference, the
volume integrals are denoted Ax, Ay, and Az, and the “-” face surface integrals are denoted SAxm, SAym, and SAzm.
Together, the high number of operations with comparatively few solution variables and the sparsity of the integral
arrays make this method ideal for GPU computation.

2

Table 1: Matrix Fill Fraction

Polynomial 2D Simulation 3D Simulation
Degree Volume Integrals Surface Integrals Volume Integrals Surface Integrals

1 12.5% 50.0% 6.25% 25.0%
2 10.6% 40.7% 4.30% 16.6%
3 10.1% 35.9% 3.63% 12.9%
4 9.68% 33.6% 3.25% 11.3%

10

20

10

20

10
20

(a) Ax
10

20

10

20

10

20

(b) Ay

10

20

10

20

10

20

(c) Az

10

20

10

20

10

20

(d) SAxm

10

20

10

20

10

20

(e) SAym

10

20

10

20

10

20

() SAzm

Figure 2: Sparsity illustration for 2nd degree polynomials in 3D. Cubes are placed at array locations containing
nonzero elements. Visualized by Mathematica.

It is highly beneficial to store these arrays in a manner that takes advantage of their sparse structure. A format
similar to compressed row storage (CRS) [2] was chosen, allowing the integrals to be stored in 1D arrays along with
three corresponding 1D arrays of ints giving nonzero element locations. By doing so, we limit the amount of data
that must be sent to the GPU, and make parallelization on the GPU a simpler maer.

3 GPU Programming Model
Using OpenCL terminology, a GPU operates by executing a function called a kernel in parallel on a cluster of

work-items, which are organized into work-groups with an associated memory space we call tiles. Each work-item
then has a global id and local id, and each work-group has a group id. ere are several nuances of this model to take
advantage of, the most important of which is how workloads are managed. For instance, if work-items inside the
same work-group are given drastically different workloads, the entire work-group must wait for the slowest member
to complete its task before moving on to the next portion of the problem. As a result, it is highly advantageous to

3

assign uneven workloads to different work-groups, rather than within work-groups. Although the code is wrien
with GPUs in mind, it can be effectively implemented on other architectures using the OpenCL model.

Work-Item

}} Work-Group

Figure 3: OpenCL Execution Model

To take advantage of this aspect of parallelism, and avoid thread divergence, Eq. (5) is solved by assigning a single
𝑔𝑛,ic to each tile. en, work-items share the workload of tensor-vector multiplication and summation, avoiding
uneven workload distributions between work-items (called thread divergence). is way, if an integral array has a
largely zero row 𝑛, the entire work-group is given a lighter workload. is allows it to finish earlier and execute a
new work-group rather than waiting for individual work-items to finish their work.

In Listing 1, Eq. (5) is considered a series of equations of the form 𝛥𝑔𝑛,ic += ∑𝑁𝑢
𝑘=1 𝑢𝑘,ic ∑𝑁𝑔

𝑖=1 𝑔𝑖,ic𝑍𝑛,𝑘,𝑖. Each
work-item has its own instance of the variable my_dg. Work-items then proceed to sum together a subset of the
above equation, that is, products of elements of velocity u, level set scalar g, and the integral array, denoted Z for
generalization in the code. Instead of looping over both 𝑘 and 𝑖, we loop over a single integer 𝑙 that corresponds to
nonzero elements of the compressed array Z. Two arrays Zi2 and Zi3 give the values of 𝑘 and 𝑖 associated with 𝑙
for each iteration. Finally, each work-group has its own value of 𝛥𝑔𝑛,ic to compute, with a unique combination of 𝑛
and ic. Since each work-group only has one value of 𝑛, it only needs to loop through a subset of the integral array
Z. As a result, it is necessary to pass in two integers Znstart and Znend that give the bounds of this subsection.

In order to take advantage of memory coalescence and evenly distribute the workload, and hence reduce runtime,
the local group of work-items align their access to the array Z by their local id number. For example, the work-item
with local id 7 will access the array element immediately aer the work-item with local id 6 and immediately before
the work-item with local id 8.

Listing 1: GPU Implementation
1 const uint tiX = get_local_id(0); // get local work-item id

const uint ntX = get_local_size(0); // get local work-group size
3

// initialize summation variables
5 double my_dg=0.0;

__local double partialsum[TILE_SIZE];
7

for (uint l=Znstart+tiX; l<Znend; l+=ntX) {
9 uint k = Zi2[l]; uint i = Zi3[l]; // multiply by associated u and g

my_dg += u[k]*g[i]*Z[l];
11 }

partialsum[tiX] = term; // save private result to local array
13 my_dg = reduction_sum_within_tile(partialsum); // sum the partialsum elements

4

On the next iteration, 𝑙 is updated with a step size equal to the number of work-items in the work-group. Finally,
aer each work-item has saved its result in an array stored in local memory, the elements of the array are summed
together via a simple parallel reduction routine.

4 Tris and Workarounds
Programming GPUs comes with the added challenge that OpenCL (and CUDA) currently do not support Fortran

[9]. It is, however, possible for Fortran to call C functions. Since OpenCL readily supports host code wrien in C,
functions in C can easily act as a staging area between Fortran and OpenCL. is is done by first giving C access
to data allocated in Fortran, which is achieved by creating pointers to that data and sending them as arguments to
a C function. Since Fortran natively sends pointers rather than the data itself, this is as simple as writing the first
element of an array as the argument to a C function, which C then receives as a pointer to an array contiguous in
memory.

Passing more complex data structures, such as arrays nested within arrays of derived data types, is more compli-
cated, but still manageable. Because Fortran pads arrays in such a way that can be difficult to predict, it is simplest
to send to C a pointer to the start of each array. is process can be made more compact by defining a derived data
type in Fortran containing only a pointer, thereby allowing Fortran to generate an array of pointers (which is not
natively available). A pointer to the first element of this array of pointers is then sent to C, which allows C to find
the data associated with each variable within an array of derived data types.

Finally, OpenCL does not accept multidimensional arrays. To avoid bulky or obscure code, multidimensional
arrays are sent to the GPU as 1D arrays (so long as they are contiguous in memory), and a macro is defined on the
OpenCL side to simulate multidimensional behavior.

5 Results
e OpenCL algorithm for DG advection was executed on a Nvidia Tesla C2050 GPU (with a work-group size

of 128) and compared to the original algorithm running in serial on a a 1.9GHz AMD Opteron 6186 CPU. Both
algorithms take advantage of sparsity and are implemented on equidistant Cartesian meshes in unit sized domains.
Verification of the method has been performed for the CPU algorithm previously [4], so the emphasis of this work
is limited to compute times and assurance that the CPU and GPU give equivalent results (within 105 times machine
epsilon at double precision). As such, the test problem is arbitrary. For robustness, the solution variable coefficients
are randomized, and activating or deactivating terms of the equation can be used for debugging and additional
assurance that each term is being evaluated correctly.

Table 2: Results for Compute Time of One RK-Step

Polynomial 1/𝛥𝑥 2D Simulation 3D Simulation
Degree CPU time (s) GPU time (s) Speedup CPU time (s) GPU time (s) Speedup

1
10 6.37e-4 2.12e-3 0.30x 2.25e-2 6.96e-3 3.23x
20 2.52e-3 3.11e-3 0.81x 1.79e-1 3.99e-2 4.49x
40 9.47e-3 6.28e-3 1.51x 6.18e-1 2.83e-1 2.18x

2
10 2.45e-3 2.45e-3 1.00x 3.24e-1 2.56e-2 12.7x
20 9.63e-3 4.57e-3 2.11x 1.18 1.41e-1 8.37x
40 3.85e-2 1.15e-2 3.35x 8.82 1.05 8.40x

3
10 8.81e-3 2.87e-3 3.07x 1.08 8.30e-2 13.0x
20 3.38e-2 6.52e-3 5.18x 8.34 6.20e-1 13.5x
40 1.34e-1 1.89e-2 7.09x 6.67e+1 4.78 14.0x

4
10 3.47e-2 4.34e-3 8.00x 1.15e+1 4.16e-1 27.6x
20 1.38e-1 1.03e-2 13.4x 1.32e+2 3.03 43.6x
40 3.92e-1 3.06e-2 12.8x 1.36e+3 2.40e+1 56.7x

ese tests produce several interesting trends. First, low degree polynomials show lile benefit from the GPU,
and sometimes even slower runtimes. is is simply because of the parallelization scheme, where we delegate work

5

LA-UR-13-26533
Approved for public release; distribution is unlimited.

Title: Compact Hash Algorithms for Computational Meshes

Author(s): Tumblin, Rebecka
Ahrens, Peter
Hartse, Sara A.
Robey, Robert W.

Intended for: SIAM Journal of Scientific Computing

Issued: 2013-08-19

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National
Security, LLC for the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.
By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to
publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.
Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the
U.S. Departmentof Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish;
as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

COMPACT HASH ALGORITHMS FOR COMPUTATIONAL MESHES

REBECKA TUMBLIN†‡§, PETER AHRENS‡¶, SARA HARTSE‡‖, AND ROBERT W. ROBEY‡

Abstract. We employ compact hashing and the discrete properties of computational meshes to optimize spa-
tial operations in scientific computing applications. As a model, we apply spatial hashing methods to the problem
of determining neighbor elements in Adaptive Mesh Refinement (AMR) schemes. By applying memory savings
techniques, we extend the perfect spatial hash algorithm to a compact hash by compressing the resulting sparse data
structures. Using compact hashing and specific memory optimizations, we increase the range of problems that can
benefit from our ideal O(n) algorithms. The spatial hash methods are tested and compared across a variety of archi-
tectures on both a randomly generated sample mesh and an existing cell-based AMR shallow-water hydrodynamics
scheme. We demonstrate consistent speed-up and increased performance across every device tested and explore the
ubiquitous application of spatial hashing in scientific computing.

1. Introduction. The compact spatial hash algorithms we have developed extend the
domain of hashing to include operations on finely resolved computational mesh structures.
Robey, Nicholaeff, and Robey [16] demonstrated that mesh operations can exploit the prop-
erties of discretized data allowing for a hash-based approach to be implemented for spatial
operations such as neighbor finding, sorting, remapping and table look-ups. Using their per-
fect spatial hash, they were able to achieve the ideal limit of O(n) time. Computational
meshes represent a subset of discretized data that we explore in this current work. With ex-
ascale computing on the horizon, memory operations and their consequent power usage are
quickly becoming the dominant consideration for production codes in terms of speed-up and
cost efficiency. We introduce memory efficiencies in the perfect spatial hash which allow
hashing functions to be applied to a variety of physical applications by increasing the breadth
of their performance enhancements to include a wide range of spatial structures.

Advances in high powered computing have led computational science to emerge as a new
paradigm in science while acting as a crutch for both the theoretical and experimental fields.
Most advanced production codes can take years to develop, and scientists often lag behind
the most recent advances in hardware and algorithms due to the difficulty and time involved
in integrating new techniques into pre-existing codes. As scientific computing becomes more
cental to the scientific community, portability is quickly becoming an important considera-
tion. We are able to show that compact hashes are robust, efficient, and easy to implement
in highly resolved, complex physical applications while at the same time showing significant
speed-up and increased performance on a variety of architectures.

As industry continues to proliferate parallel processors, adapting algorithms for fine-
grained parallelism becomes necessary to fully utilize the capability of these machines. Hash-
ing is an intrinsically parallel, non-comparison based search algorithm which requires no
inter-thread communication. This allows performance portability across CPU and GPU ar-
chitectures. Spatial hashing functions which take advantage of discretized data properties
provide a new and innovative approach for adapting algorithms to more highly parallel archi-
tectures with broad application to computational science.

This paper is organized as follows. In Section 2, Background, we provide a synopsis of
hashing and the advances that led to our research. In Section 3, Methodology, we describe

∗Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear
Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.
†Corresponding Author: email rtumblin@uoregon.edu
‡XCP-2 Eulerian Applications Group, Los Alamos National Laboratory
§University of Oregon
¶University of California, Berkeley
‖Brown University

1

the memory optimizations that enable the spatial compact hash. In Section 4, Performance
Results, we explore performance on a randomly generated sample mesh and develop a cost
model. In Section 5, Application to Scientific Computing, we demonstrate the application of
compact spatial hashing to a cell-based AMR shallow-water hydrodynamics scheme, and we
explore the performance enhancements achieved. In Section 6, Conclusions, we review the
impacts these methods have in the broader scope of computation and where there is potential
for further development.

2. Background. A hash table consists of an array of memory spaces, called buckets,
where data may be stored. This data takes the form of values which are accessed by their
associated keys. These keys are used to map their values to locations within a hash table.
Every key maps to a unique integer, called a hash code, by means of a hash function. This
unique integer is then converted to an index corresponding to a bucket in the table. We call
this index a hash location. An entry (key-value pair) is inserted into a hash table, then the
table is later queried for a key to get its associated value if it exists. More formally, a perfect
(or 1-probe) hash function, h, is an injection (one-to-one) mapping such that:

h : U → {Bk}

The set of keys, {S}, are members of the universe of possible values, Si ∈ Uand the buckets
{Bk} comprise the hash table with a size |{Bk}|. In addition, for x, y ∈ {S} such that x 6= y,
it must be true that h(x) 6= h(y). This last guarantee is that no collisions may occur.

A perfect hash table is designed for data whose range and pattern of hash codes are
known, so that creating a hash table large enough to accommodate all the possible keys is
feasible. A compact hash uses a compression function to reduce the range of hash locations.
If it cannot be guaranteed that the hash codes will be unique, we must make plans to overcome
the situation in which two different keys have made their way to the same bucket. This
situation is referred to as a collision, and compact hashes are designed to handle collisions.

One of the earliest collision handling methods, chaining, developed by Williams [17],
allows multiple keys to exist in one bucket through the use of singly-linked lists (chains
of pointers, leading to this method’s name). Another of the early approaches is to use a
separate hash table to store colliding entries, called double hashing. An interesting approach
to using the existing memory for the hash table was developed by Peterson [15] and called
open addressing. Peterson proposed, in the event of a colliding entry, to search to the right of
its original location in a predetermined, repeatable sequence for an empty bucket in which to
insert the entry. Regardless of how collisions are resolved, they are always more expensive to
handle than simply inserting an entry into an empty bucket. The minimization of collisions
is a key aspect of compression function design. Thus, the compression function in a compact
hash table is designed to randomize the hash locations to reduce the number of collision due
to patterns in the data. The table size then has no relation to the range of possible keys, but
rather the number of entries to be inserted. The number of entries divided by the number of
buckets in a hash table is referred to as the load factor.

Advances have been made to both perfect hashing and compact hashing since their cre-
ation. Czech, Havas and Majewski[5] present a thorough treatment of enhancements to per-
fect hashing in their monograph. Most of the monograph deals with static data sets where it
is worth a lot of compute time to come up with a perfect hash function. But the last section
of the monograph discusses dynamic data sets and also has a very short section on paral-
lelization efforts for these methods. For the compact hashing domain, Munro and Celis [14]
present some advanced reordering techniques such as Brent’s method. Brent[?] proposed the
smart placement of keys with the plan to reduce the number of probes needed for queries.

2

These reordering techniques are based on the idea that when there is a collision, there is a
choice of which key-value pair to move down the probe sequence.

The recent interest in parallel programming has led to the realization that hash tables are
easy to parallelize. The nature of the perfect hash function mostly requires no inter-thread
communication, allowing for fine-grained parallelism to be exploited. Each insertion or query
can function alongside one another since each bucket holds its own unique key. This is unlike
a k-D tree method where searching operations are dependent on the previous iteration. A k-D
tree bisects the data, and searches to the left and right and then continues unitl the queried data
is found. This algorithm can be achieved in O(n log n) time. In a hash based approaches,
we directly query the memory location of the desired value. Hash based approaches execute
in expected O(n) time.

Implementations of compact hashing with its collisions also introduces some dependen-
cies on adjacent threads though to a lesser degree than a tree-based method. In highly parallel
environments, the collision handling can generate performance and correctness issues. These
can be resolved with a locking mechanism, but more recent work by Gao, Groote, and Hes-
selink [7] developed a lock-free and nearly wait-free implementation of open-address hash-
ing. An interesting aspect of their work is the lengthy proof of correctness they felt necessary
to undertake for their hash implementation.

Alcantara et al. [2, 1] saw that advancing technology allowed for efficient implementation
of hashing methods on GPU’s. He developed a set of parallel implementations for open
addressing, chaining, and cuckoo hashing on GPU’s. He then examined their performance
based on memory usage, table construction speed, and retrieval efficiency. Alcantara showed
that tables with millions of elements can be effectively implemented by using the new atomic
operations on the GPU’s. He also noted that each application requires different considerations
for the inclusion of specialized features when developing the hashing method. Ultimately, a
balance between memory usage, table construction speed and retrieval efficiency must be
tailored to each specific application.

3. Methodology. We now wish to apply the attributes of hashing to operations involving
data associated with computational meshes and the spatial layout of a grid. The hash-based
spatial method treats a mesh’s cells as discretized data and uses a hash function to map this
data to a hash table. For our definition of discretized data we mean a collection of information
that is mapped onto a matric space(A, dA) with the properties defined by Robey, Nicholaeff,
and Robey [16]. Spatial hashing is characterized as mapping a metric space (A, dA) contain-
ing differential discretized data to the powerset of a finite cover {Bk} of a new metric space
(B, dB) whose elements form a hash table. Note that the use of a metric space endows a
distance attribute to the set, distinguishing this concept as spatial hashing, in contrast with the
general hashing concepts introduced earlier. We define this mapping as a hash function, h:

h : A→ P ({Bk}) (Ai 67→ ∅ ∀i)

where {Bk} represents a bucket in the hash table. The hash table size, or finite cover, can
then be defined as,

|{Bk}| =
m(A)

|∆min|

where |{Bk}| is the set of buckets, m(A) is the range of the original data being hashed, and
|∆min| is some minimal integer size of the dataset. Mapping to a powerset allows the pos-
sibility of mapping elements of {A} to multiple locations in the hash table. If we know the
range our data encompasses, the maximum and minimum values it can take, m(A), and we

3

generate sparse matrix

Adaptive mesh structure = 8 cells

1

3

5 6

4

7

2

8

1

3

5 6

4

7

2

8

Δmin
Fine mesh structure = 32 cells

1

3

5 6

4

7

2

8

1 1

1

2 2

2

7 7

7

8

8

8 8

8

8

8 8 8

88

8 8

88

Map to fine mesh

optimize memory

FIGURE 3.1. This concept diagram depicts the steps of hashing spatial data in AMR.

know the minimum difference between values, 4min, this allows us to generate a perfect
hash table containing the minimum number of buckets for an injective mapping. By choosing
4min to be the minimal distance between cell centers on a computational mesh, we can guar-
antee a bucket for the data contained in the computational mesh. Extending this formalism
to compact hashing involves compressing the range of the new metric space (B, dB) so that
there is no longer a one-to-one correspondence between the original elements of the metric
space and locations in the hash table. We explore specific methods for ahcieving this while at
the same time preserving the relevant data in the original set in Section 3.2.

To help elucidate the multiple layers of abstraction, we wish to provide a short concep-
tual run-through of spatial hashing in the context of AMR datasets. However, we do not want
to limit the scope of spatial hashing to this one specific application. We will be using cell
locations in our concept diagram, but physical data such as density fields could be used in-
stead. Our approach involves mapping the AMR cell locations to the fine mesh structure as
shown in Figure 3.1. By exploiting the meshes inherent properties, we can reduce the number
of writes which uniquely determine cell locations; these methods will be explored in Section
3.2. Reducing the writes generates a sparse matrix which contains the spatial layout of the
computational mesh.

Once we have reduced the number of writes, we map the mesh structure to a sparse,
one-dimensional perfect hash table. The sparsity of the mesh makes it a viable candidate
for compression. We can compress the data into a compact hash table using a compression
function which randomizes the data to reduce the number of collisions. Later in the process,
we will have to deal with the collisions. The terminology for perfect and compact spatial
hashing are shown in Figure 3.2.

We rely on the spatial layout of the computational mesh to generate a unique key asso-
ciated with each value. The idea of a unique key is explored in depth in an earlier paper by

4

compressibility sparsity load factor

perfect hash

compact hash

Terminology:

32/8 = 4 8/32 = .25 8/32 = .25

24/8 = 3 8/24 = .33 24/32 = .75

FIGURE 3.2. This table defines compressibility, sparsity and load factor based on the examples in the previous
figure.

Robey, Nicholaeff, and Robey [16]. This key for a cell-based AMR grid is the spatial location
of the cell at the finest level of the mesh. This directly corresponds to the hash bucket index
for the perfect hash. The bucket index is simply the unique key generated from the (i, j, level)
location and becomes just a simple array assignment or retrieval as shown in Listing 1. In our
current extension to compact hashes, we continue to exploit the unique key.

LISTING 1. Coding for a Perfect Hash
1 / / ∗ i n s e r t o p e r a t i o n
2 hash [inpu tKey] = i n p u t V a l u e ;
3

4 / / ∗ query o p e r a t i o n
5 re turn (hash [inpu tKey]) ;

3.1. The Neighbor Finding Problem. In this paper, we only address the neighbor find-
ing operation for a cell-based AMR application. This spatial operation is important to the
performance and scalability of these codes. Optimizing each spatial mesh operation can only
be done by exploiting the details of the application. There are two unique steps to this opti-
mization. First, we reduce the number of writes to the minimum needed to support the spatial
queries (Section 3.2). Second, we compress the data in the fine, regular grid structure of the
mesh into a smaller compact hash (Section 3.3). We will exploit some of the application rules
in this process. The most important rule is that refinement jumps can only be a factor of two
at each interface. This means that each adjacent cell can either be a factor of two finer, the
same size, or a factor of two larger. The second rule for this use case requires that the hash
table is temporary, it is constructed and then used only once per iteration. If it is fast enough
to be used in this scenario, then memory can be freed for other needs in the computation. But
there is still the flexibility to keep the hash table and make modifications to the table every
iteration, saving much of the table initialization and setup time.

Other operations such as remapping and table look-up can also be optimized in a similar
manner, but the details of the spatial operation and the rules of the application must be con-
sidered in the process. This same methodology can be applied to other applications such as
cell-based AMR with different refinement rules, patch-based AMR and unstructured general
polyhedral grids.

3.2. Memory Write Optimizations. The nature of the neighbor finding problem and
the structure of the mesh determine whether the insertions and queries performed in the per-
fect spatial hash are actually necessary. We can exploit aspects of the neighbor finding prob-
lem to reduce the number of insertions necessary in the perfect hash table, as illustrated in
Figure 3.3. Optimization 1 only writes to the outermost cells because the interior cells are
never accessed and, thus, irrelevant for determining a neighbor cell. Interior elements are
given a null value, represented by a sentinel value. Optimization 2 takes advantage of the
fact that the level of refinement between cells can only differ by one symmetric bisection and

5

77 7 7 7 7 77

77 7 7 7 7 77

77 7 7 7 7 77

77 7 7 7 7 77

77 7 7 7 7 77

77 7 7 7 7 77

77 7 7 7 7 77

55 5 3 3 3 35

55 5 3 3 3 35

55 5 3 3 3 35

77 7 7 7 7 77

55 5 3 3 3 35

77

77

77

77

77

77

77 7 7 7 7 77

55 5 3 3 3 35

5 3 35

5 3 35

55 5 3 3 3 35

77 7 7 7 7 77

77

7 77

5 3 35

5 3 35

5 5 3 3 35

77

7

35

Original Optimization 1 Optimization 2 Optimization 3

FIGURE 3.3. Memory write optimizations introduce sparsity in the hash table.

reduces the writes to only seven outer cells. Optimization 3 extends this idea, reducing the
process to only one write with three reads, each checking for a finer, same size, or coarser
cell. All of our optimizations involve only mapping some elements of the original dataset,
(A, dA), to the hash table (B, dB) while preserving necessary information. This allows
us to compress the number of buckets in the hash table without affecting the relevant data
containing the cell locations on the adapted mesh.

Reducing the insertions and queries speeds up the execution time of the perfect hash
and, as it reduces the number of necessary buckets, introduces sparsity into the problem.
Sparsity is related to memory compressibility of the mesh, which we define as the ratio of the
maximum number of cells on the finest level of the mesh to the number of cells in the current
timestep of the simulation (See Figure 3.2). Also, reducing the number of insertions helps
with thread divergence issues on the GPU by decreasing the difference between number of
insertions and queries between adjacent threads. Thread divergence occurs when threads in
a branching operation wait for the slowest thread to finish its calculation before advancing to
the next instruction.

Now, with the reduction in insertions, the compact hash is viable because it is able to
take advantage of this memory compression and make smaller hash tables, offsetting the
much more costly insertions and allowing for the possibility of much larger problems.

The specifications of the grid we are examining, as well as the requirements of the neigh-
bor finding problem, allow for these particular memory optimizations and the introduction of
sparsity. In order to implement the compact hash for other spatial operations, it will be nec-
essary to find comparable optimizations.

3.3. The Compact Hash. When making design decisions for the compact hash on the
CPU and GPU, priority was given towards optimizing the GPU implementation, while mak-
ing the two implementations as similar as possible to avoid code repetition. One example
would be our choice of open addressing. Open addressing works incredibly well on the
GPUs, but for the CPU, we could have used chaining in place of open addressing. Thus,
some decisions made when optimizing the GPU governed the CPU algorithms.

In a perfect hash table, we don’t have to handle collisions because each key’s hash code
is its hash location. When implementing a compact hash table, not only must we handle
collisions, we must reduce their frequency of occurrence. By randomizing the hash codes
before reducing their range to fit in the hash table, patterns in the input data that would
normally lead to collisions can be avoided. Mitzenmacher and Vadhan [12] showed that a
2-universal compression function is sufficient to be competitive with more complex methods

6

even though it is simple to implement and cost-effective to execute. The definition of what it
means to be 2-universal is given by Carter and Wegman [4], and we advise the reader to refer
to his work for a more complete understanding of this family of functions. Our compression
function is taken from the first example of such a function given by Carter and Wegman:

hashLocation = ((a ∗ hashCode + c)%m)%tableSize

where a, c and m are constants and the modulo (%) operator is used to generate randomness
and keep the result in the the range of the table. The constants a and c must satisfy certain
constraints to achieve good performance, the same constraints necessary to guarantee a full
period of the similar-looking linear congruential pseudorandom number generator [8, 13].
The factors c and m should be relatively prime, a− 1 should be divisible by all prime factors
of m, and a−1 should be a multiple of 4 if m is a multiple of 4. Our initial implemention uses
simple random numbers, but for the library under development, we used accepted constants
for linear congruential generators (a = 2147483629, c = 2147483587, m is the largest 32-bit
prime). We plan on randomly generating numbers that satisfy the above contraints.

Although they can be reduced, collisions cannot be avoided entirely. To handle colli-
sions, a quadratic probing open addressing hash table with the linear congruential compres-
sion function was chosen due to the superior construction and retrieval speeds for large data
sizes on the GPU as shown by Alcantara [1]. When inserting or querying within a hash table
with open addressing, the goal is the same: to find a bucket containing the given key or to find
an empty bucket where the key can be placed. If we are inserting into the table, finding an
identical key allows us to overwrite the entry there. Finding an empty location would allow
us to simply insert the entry there. When querying the table for a key, finding the key means
that we can return its associated value. Finding an empty bucket means that the key does not
exist. The search for such a bucket is the same whether we are inserting into or querying the
table. We obtain a hash location from the compression function and hash code (we get the
hashcode from the hash function and key). We first check the bucket at this location to see
if it is null or contains a matching key. If not, we check buckets at locations in the sequence
according to:

hashLocationi = (hashLocation0 + P (i))

where P is some predetermined probe sequence.
In a linear probing open addressing hash table, the probe sequence is:

Plinear(i) = B ∗ i

It has been shown that 1 is a good value for B [8]. Linear probing does have some issues
however, as long clusters of keys are created that must be traversed iteratively to find empty
locations or keys. This effect is called primary clustering, and can be remedied through the
use of a quadratic probe sequence as developed by Mauer [11]. A quadratic probe sequence
is:

Pquadratic(i) = A ∗ i2 + B ∗ i

It has been shown that good values for A and B are 1 and 0 [8]. Quadratic probing solves the
problem of primary clustering, but suffers from another effect, secondary clustering. This is
the issue of chains forming when multiple keys are mapped to the same initial spot, and must
probe the same sequence to find an empty spot to insert. It is known that the first tableSize/2
locations probed in a quadratic probe sequence will be unique if the tablesize is prime [3]. We

7

need a prime number, and since there are simple tests for the primality of proth numbers, we
generate a proth prime close to the desired table size. Proth primes occur with a reasonable
frequency. For a compact hash using open addressing with a quadratic jump, the operations
can be expressed in a single yet complex loop as shown in the pseudocode in Listing 2 and C
code for the CPU in Listing 3.

LISTING 2. Pseudocode for Compact Hash using Quadratic Probing
1 / / ∗ i n s e r t o p e r a t i o n
2 s e t h a s h L o c a t i o n t o ((inpu tKey ∗ a + c) % m) % t a b l e S i z e
3 do{
4 s e t i n s e r t L o c a t i o n t o n e x t l o c a t i o n i n q u a d r a t i c p robe s e q u e n c e
5 } whi le i n s e r t L o c a t i o n i s n ’ t a v a l i d s p o t f o r i n s e r t i o n and we haven ’ t t r i e d t o o many

t i m e s
6 i f i n s e r t L o c a t i o n i s a v a l i d s p o t f o r i n s e r t i o n {
7 s e t t h e key a t i n s e r t L o c a t i o n t o inpu tKey
8 s e t t h e v a l u e a t i n s e r t L o c a t i o n t o i n p u t V a l u e
9 }

10

11 / / ∗ query o p e r a t i o n
12 s e t h a s h L o c a t i o n t o ((inpu tKey ∗ a + c) % m) % t a b l e S i z e
13 do{
14 s e t q u e r y L o c a t i o n t o n e x t l o c a t i o n i n q u a d r a t i c p robe s e q u e n c e
15 } whi le t h e b u c k e t a t q u e r y L o c a t i o n i s n ’ t empty and doesn ’ t match our inpu tKey and we

haven ’ t t r i e d t o o many t i m e s
16 i f t h e b u c k e t a t q u e r y L o c a t i o n i s empty {
17 l e t u s e r know query i s u n s u c c e s s f u l
18 } e l s e i f t h e keys match {
19 r e t u r n t h e v a l u e a t q u e r y L o c a t i o n
20 }

LISTING 3. Compact Hash Coding for the CPU using Quadratic Probing
1 / / ∗ i n s e r t o p e r a t i o n
2 i t e r a t i o n = 0 ;
3 h a s h L o c a t i o n = ((inpu tKey ∗ a + c) % m) % t a b l e S i z e ;
4 f o r (i n s e r t L o c a t i o n = h a s h L o c a t i o n ;
5 hash [2∗ i n s e r t L o c a t i o n] != −1 && hash [2∗ i n s e r t L o c a t i o n] != inpu tKey && i t e r a t i o n <

maxTr ies ;
6 i n s e r t L o c a t i o n = (h a s h L o c a t i o n + i t e r a t i o n ∗ i t e r a t i o n) % t a b l e S i z e) { i t e r a t i o n ++;}
7 i f (i t e r a t i o n < maxTr ies) {
8 hash [2∗ i n s e r t L o c a t i o n] = inpu tKey ;
9 hash [2∗ i n s e r t L o c a t i o n +1] = i n p u t V a l u e ;

10 }
11

12 / / ∗ query o p e r a t i o n
13 i t e r a t i o n = 0 ;
14 h a s h L o c a t i o n = ((inpu tKey ∗ a + c) % m) % t a b l e S i z e ;
15 f o r (q u e r y L o c a t i o n = h a s h L o c a t i o n ;
16 hash [2∗ q u e r y L o c a t i o n] != −1 && hash [2∗ q u e r y L o c a t i o n] != inpu tKey && i t e r a t i o n <

maxTr ies ;
17 q u e r y L o c a t i o n = (q u e r y L o c a t i o n + i t e r a t i o n ∗ i t e r a t i o n) % t a b l e S i z e) { i t e r a t i o n ++;}
18 i f (hash [2∗ q u e r y L o c a t i o n] == inpu tKey) {
19 re turn &hash [2∗ q u e r y L o c a t i o n + 1] ;
20 } e l s e {
21 re turn NULL;
22 }

Hashing in parallel is very similar to hashing serially. Every thread is assigned an entry to
insert, or a key to query, and all threads probe the same hash table in global memory in parallel
for the appropriate locations. This model is particularly suited towards GPU computing, as
GPUs have a fair amount of relatively fast global memory on the device. The parallel insertion
algorithm differs from the serial one in one important way. When checking to see if a bucket
is empty and, if it is, inserting a key in it, we must impose mutual exclusion on the bucket’s
key field and its empty or full field. This means that for the duration of the above set of
operations, only one thread may access these fields at a time. If a sentinel key value is chosen
to mean that a bucket is empty, this mutual exclusion can be performed with an atomic check

8

and exchange operation. For an operation or set of operations to be considered atomic, it
must be performed without interruption. While not all atomic operations are implemented
using a form of mutual exclusion, they must guarantee the behavior. If the insertion thread
did not use one of these techniques during its execution, it would be possible for two threads
to check if a bucket was empty, and both write their (potentially different) keys into the same
memory address. This creates a race condition, where the key that gets written depends on
which thread reaches the memory address first. Obviously, this must be avoided because the
other thread will, in this situation, fail to write it’s entry into the table at all. The pseudocode
for a parallel insert in shown in Listing 4. In OpenCL, there are atomic operations defined
for 32-bit and 64-bit integers, and if a sentinel value is used to mean that buckets are empty,
then mutual exclusion doesn’t need to be imposed by more explicit means. An example of
OpenCL code with an atomic operation is shown in Listing 5.

LISTING 4. Psuedocode for the Parallel Insert Operation
1 s e t h a s h L o c a t i o n t o ((inpu tKey ∗ a + c) % m) % t a b l e S i z e
2 whi le we haven ’ t t r i e d t o o many t i m e s {
3 s e t i n s e r t L o c a t i o n t o n e x t l o c a t i o n i n q u a d r a t i c p robe s e q u e n c e
4 a q u i r e l o c k on t h e key memory a t i n s e r t L o c a t i o n
5 i f i n s e r t L o c a t i o n i s a v a l i d s p o t f o r i n s e r t i o n {
6 s e t t h e key a t i n s e r t L o c a t i o n t o inpu tKey
7 un lo ck t h e key memory a t i n s e r t L o c a t i o n
8 s e t t h e v a l u e a t i n s e r t L o c a t i o n t o i n p u t V a l u e
9 b r e a k

10 }
11 un lo ck t h e key memory a t i n s e r t L o c a t i o n
12 }

LISTING 5. Compact Hash Coding for Parallel Insert Operation
1 i t e r a t i o n = 0 ;
2 h a s h L o c a t i o n = ((inpu tKey ∗ a + c) % m) % t a b l e S i z e ;
3 oldKey = atomic_cmpxchg (& hash [2∗ i n s e r t L o c a t i o n] , −1, inpu tKey) ;
4 f o r (i n s e r t L o c a t i o n = h a s h L o c a t i o n ;
5 oldKey != −1 && oldKey != inpu tKey && i t e r a t i o n < maxTr ies ;
6 i n s e r t L o c a t i o n = (h a s h L o c a t i o n + i t e r a t i o n ∗ i t e r a t i o n) % t a b l e S i z e) {
7 i t e r a t i o n ++;
8 oldKey = atomic_cmpxchg (& hash [2∗ i n s e r t L o c a t i o n] , −1, inpu tKey) ;
9 }

10 i f (i t e r a t i o n < maxTr ies) {
11 hash [2∗ i n s e r t L o c a t i o n] = inpu tKey ;
12 hash [2∗ i n s e r t L o c a t i o n +1] = i n p u t V a l u e ;
13 }

3.4. Delivering a GPU Library. A library for hashing both on the CPU and parallel
devices was developed to better create an abstraction barrier between neighbor calculation
and hashing, to improve code modularity and reuse in our organization, and to encourage
others to adopt and explore hashing techniques. The library was created in C for use by
Fortran C, and C++. OpenCL was chosen as a parallel computing language for it’s portability
across different GPU devices.

The software coding techniques for delivering an OpenCL library are very new. OpenCL
compiles at runtime on the currently selected hardware, yielding strong portability. A string
containing the code is compiled for that hardware during execution. But for portability, there
are two situations that must be handled. The first situation is the kernel source code should
be bundled with the library so that the library and source code cannot get separated. Conven-
tional techniques involve storing the CL code in a file and reading that file when the string is
needed. We developed a string encapsulation for the source code into the hash library. The
run-time compile of the OpenCL code now uses a string embedded into the library instead of
a separate file. Thus users no longer need to specify the path to the OpenCL file. Some of
the functions in the library are subroutines rather than kernels. These must be present in the

9

0 10 20 30 40 50 60 70
Mesh Compressibility

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

E
x
e
cu

ti
o
n
 T

im
e
s

(s
)

256 x 256 mesh run on Kepler

Original
Optimization 1
Optimization 2
Optimization 3
Compact Hash

Execution Times of Different Hash Methods on the GPU

a.

0 10 20 30 40 50 60 70
Mesh Compressibility

0

1

2

3

4

5

6

R
e
la

ti
v
e
 S

p
e
e
d
u
p

(256 x 256 mesh compared to same card)

Cypress (ATI)
Kepler (Nvidia)
Fermi (Nvidia)
MIC (Intel)

Speed up of Compact Hash Relative to Perfect Hash

b.

FIGURE 4.1. a) Memory optimizations improve performance. b) The compact hash method shows speed-ups
on different devices.

application’s OpenCL source at run-time. To handle this case, the source code is embedded
in a string and the application retrieves it with a get source command, prepends it to their
application OpenCL code and then compiles it.

In OpenCL, function pointers and arrays of memory pointers are not allowed, render-
ing many object-oriented design concepts obsolete. To work-around this, an object-based
approach using macros was taken for the design of the hash library. Macros allowed us to
hash values of a generic type by imitating polymorphism and inheritance. The heavy use of
macros also allowed us to code key sections for both OpenCL and C, as the respective syntax
does not vary too much. To allow us better error detection, the macros were expanded into
separate files so that the compiler could use the correct line numbers. Another advantage of
using macros in OpenCL is that code passed to the hardware is already in string format and
doesn’t need a separate file. This in effect embeds the OpenCL source code and in the process
solves the problems discussed above.

We considered many use cases in developing a versatile OpenCL library. The data to be
operated on may be on the host, on the device, or some combination of the two. The library
must be capable of handling all of these cases. In order to do so, we automatically transfer
data if necessary to support each situation.

We are including the version of the hash library used in this paper as supplemental mate-
rial. This will improve the reproducibility of this research. It will be released with the Apache
license which allows free use, but requires attribution so that the impact of this work may be
ascertained.

4. Performance Results. After developing the compact hash algorithm utilizing the
rules of our AMR method to reduce memory usage and generate sparse data structures, we
implement our methods on a randomly generated sample mesh to test their performance ca-
pabilities. We test the different memory optimizations we developed, as well as, explore
performance variation which occurs due to spatial locality within the mesh structure. Our
methods were developed to be portable across a variety of architectures making it necessary
to consider the impact hardware will have on performance and protability. After we obtain
performance results, we develop an analytic model and compare to our numerical results.

4.1. Standalone neighbor testbed. Here we investigate the performance of our spatial
compact hash to determine neighbor elements on a 256 x 256 coarse grid refined up to five
levels. The results are shown relative to the mesh compressibility of the given problem.
Figure 4.1a shows the timings of each successive optimization as applied to the perfect hash,

10

0 10 20 30 40 50 60 70
Mesh Compressibility

0

1

2

3

4

5

6

7
R

e
la

ti
v
e
 S

p
e
e
d
 u

p
local table relative to randomized table (256 x 256 mesh run on Kepler)

CPU Perfect Hash
GPU Perfect Hash
GPU Compact Hash

Relative Speed up for Hash Table Construction Methods

a.

FIGURE 4.2. a) Randomizing the table contruction shows the effect of cache on algorithm performance.

as well as, the timing of the compact hash using optimization 3. Each of the optimizations
adds improvement from the original perfect hash, with an especially significant difference
between the original method and optimization 1. Initially, the compact hash surpasses even
the original perfect hash indicating that for smaller scale problems with fewer refined cells,
the perfect hash is preferable. With increasing refinement, the performance of the perfect hash
using the original method and optimization 1 begins to decline and the compact hash, despite
its initial offset, is faster. For the problem sets tested, the last two memory optimizations
remain faster, but the trend of scalability with mesh compressibility is a good sign for the
utility of the compact hashing for large scale, compressible problems.

Figure 4.1b shows the compact hash tested across a variety of GPU architectures. These
include Nvidia’s M2090 (Fermi) and K20Xm (Kepler) cards (released in 2011 and 2012 re-
spectively and both members of Nvidia’s General Purpose GPU Tesla family), ATI’s Firepro
V7800 (Cypress) and Intel’s Many Integrated Core (MIC). The timings are presented as a
speed-up relative to the perfect hash on each card. As previously observed, the compact hash
does not improve upon the perfect until a compressibility threshold is reached, this threshold
varies between devices. Despite being a CPU device, the MIC shows performance on scale
with the GPUs. Its lower numbers could be attributed to the difference in the multiproces-
sor architecture and the fact that we did not optimize the workgroup-size specifically for the
MIC. The MIC software is relatively new, and as we get more experience the performance
should improve. Apart from this, these results are a strong indication of performance porta-
bility which, when combined with the code portability offered by OpenCL, demonstrates that
the speed-ups are relatively easy to attain across architectures. These consistent performance
enhancements are most likely a function of improvements at the algorithmic level which ex-
pose and utilize parallelism inherent to the problem, as opposed to custom programming for
the individual devices. OpenCL is designed to be highly portable, allowing us to write rou-
tines once that can then be compiled and run on any OpenCL-compliant hardware, including
multiple types of devices simultaneously.

In addition to devices, another variable to consider is cache storage and data locality. A
test case for a random problem involves generating the sample mesh’s refinement randomly
and as well as randomizing keys in the compact hash table during the compression stage.
This means that the program does not take advantage of any spatial locality. In a physical
application the mesh will not be random, there will be patterns inherent in the mesh structure,
and there may be some benefit to taking advantage of the cache.

We experimented with turning off randomization in generation of the hash table which
adds correlation between the spatial data and the hash table. As seen in Figure 4.2a, a spatially

11

organized hash table offers speed-up in the perfect hash methods, especially on the GPU, but
does not make a significant difference for the compact hash. This is understandable since the
compression scheme results in scattering. The question of utilizing cache efficiency on the
GPU has to be countered against the necessity for sparsity. Taking advantage of locality with
the perfect hash offers speed-up on the GPU, but introducing compressibility in the compact
hash allows it to scale to larger problems.

4.2. Cost Model. The cost model for the neighbor finding calculation is composed of an
initialization of the hash table to the sentinel value, the insertion of all of the cell data, and the
query for four neighbors for each cell. The cost model is complicated by the probabilities of
collisions and the number of queries needed to find either a fine neighbor, same size neighbor
or coarser neighbor.

Perfect Hash Cost (CPH):

CPH = HashTableSize ∗ CInit + NCells ∗ CWrite + 4 ∗NQueriesave ∗NCells ∗ CRead

where 1 < NQueriesave < 3 are the average number of queries to find the neighboring cell
with tries at the finer level, same level and finally a coarser level. NQueriesave should be
close to 2 for a typical AMR mesh.

Compact Hash Cost with generic probing (CCH):

CCH =
NCells

LF
∗ CInit

+ NCells ∗ ((CProbe + CAtomic) ∗ SuccProbeSeqave + CWrite2Words)

+ NCells ∗ (CProbe ∗ (SuccProbeSeqave +

(NQueriesave − 1) ∗ UnsuccProbeSeqave) + CRead2Words)

where LoadFactor(LF) = NCells/HashTableSize. Note that the compact hash has to
write both the key and the value to aid in the collision handling, whereas the perfect hash
only has to write the value. These are distinguished by the CWrite2Words and CRead2Words

in the compact hash and the CWrite and CRead in the perfect hash. Though twice as much
information is being written or read, cache effects make the cost of the additional reads and
writes less than a factor of two.

The compact hash cost with linear probing (CCHL) and compact hash cost with quadratic
probing (CCHQ) are obtained by substituting LinProbeSeqave or QuadProbeSeqave for
ProbeSeqave in the above equation. Note also that the initial insertion will never have a
collision, but by the final insertion, the collision probability is the load factor of the table.
Thus the collision cost must be integrated over the insertions starting at 0 and ending at the
final load factor. There is a closed form solution for the linear probes (from Knuth[8]), but
the quadratic probe sequence contains an integral in the equation (from Bell[3]).

Average successful linear probe sequence, SuccLinProbeSeqave

1

2

(
1 +

1

1− LF

)
Average unsuccessful linear probe sequence, UnsuccLinProbeSeqave

12

1

2

(
1 +

1

(1− LF)2

)
Average successful quadratic probe sequence, SuccQuadProbeSeqave

1

LF
∗
ˆ LF

x=0

{
−
(

1

LF

)
ln(1− LF)(LF − (1− e(−LF)))dx

}
Average unsuccessful quadratic probe sequence, UnsuccQuadProbeSeqave

1

LF
∗
ˆ LF

x=0

{
−
(

1

LF

)
ln(1− LF)(LF − (1− e(−LF)))dx

}
− ln(1− LF)

LF

To get a sense of the magnitude of the collision frequency and cost, some examples
are helpful. In a hash table with chaining, a load factor of 0.5 will result in an average of
1.25 buckets that are checked per search. In a hash table using open addressing for collision
resolution, a 0.3 load factor will traverse 1.21 buckets per search on average [8]. The lower
load factor for the open addressing is due to collisions being resolved within the table memory
space rather than in an external linked list. The additional cost for the collisions is not simply
the average buckets touched which would only be 20-25% more. The key and value must be
stored so that the owner of the bucket can be determined, whereas without the possibility of
collision, only the value must be stored. Offsetting this is the reduced cost of the initialization
of the smaller hash table.

5. Application to Scientific Computing. Many physical applications in scientific com-
puting rely on acquiring numerical solutions to partial differential equations (PDEs) on a

FIGURE 5.1. This AMR grid shows the
mesh refinement at the boundary of a water
wave.

discrete grid structure that approximates a continuous
space. The size of each grid element is directly pro-
portional to the numerical error associated with al-
gebraically approximating solutions to PDE’s. Of-
ten, physical applications estimate solutions across
steep shocks or gradients where the physics changes
rapidly in time. Resolving discontinuities on a dis-
crete mesh requires finely spaced grid elements, and
usually, the discontinuities that arise only cover a
sparse region of the grid. It is therefore inefficient
to finely resolve the entire mesh. AMR allows finer
resolution over regions of interest while keeping the
computational costs down over regions where low
resolution is suitable (see Figure 5.1). We have shown
that the compact hash offers a robust, efficient, and
easy to implement method for neighbor determina-
tion on a randomly generated sample mesh. We now
wish to demonstrate that our methods are viable to implement in a working scientific appli-
cation where complications such as patterns in the spatial data arise. Our other goal in this
section is to show that the compact hash scales to large, finely resolved meshes.

For scientific computing applications, using a hash table simplifies access to the cell
information as well as simplifying the performance of various spatial operations. Robey et

13

al. [16] showed that for every spatial mesh operation, there is an efficient O(n) hash-based
algorithm. The simplest method, the perfect spatial hash, avoids the possibility of collisions
by directly mapping to a hash table with buckets corresponding to the spatial layout of the
grid at the finest level of refinement. At the finest level, each cell is of a size 4min. For
scientific applications on AMR grids with many levels of refinement, it is computationally
costly to create and destroy large arrays every timestep. By exploiting the rules of our AMR
implementation, we reduce the number of buckets which contain information about the spatial
layout of the grid. This reduction yields a sparse, one-dimensional, perfect hash table. This
sparse array may be compressed to a compact hash table, but with the cost of dealing with
data collisions. This work extends spatial hashing techniques to compact hashing allowing
these methods to be viable for large problems on finely resolved meshes. This extension has
broad implications in the field of computational science.

Neighbor determination, a computationally expensive spatial operation in AMR comput-
ing methods, can be greatly enhanced using hashing techniques applied to discretized data.
As an example, we implement both the compact and perfect spatial hash in a cell-based
AMR shallow-water hydrodynamics code (CLAMR). Merging these two methods into a hy-
brid implementation allows the developer to tailor algorithm performance to the application
characteristics and available computing resources. While neighbor determination was the
only operation explored in this current work, the properties of computational meshes allow
for hash based approaches to be utilized in a variety of scientific applications such as con-
nectivity remapping in Lagrangian hydrodynamics schemes, equation-of-state table look-ups,
ray-tracing in Monte Carlo type schemes, just to name a few; the extensions of spatial hash-
ing are ubiquitous in scientific computing. With the ease of parallelizing these methods for
multi-core processors and GPU’s, spatial hashes provide the computational scientist with a
powerful tool for tackling a variety of physical problems.

5.1. Implementation in Hydrodynamics Application. To test our algorithms, we have
developed a simple shallow water hydrodynamics scheme capable of running on GPUs and
CPUs. The utilization of AMR with GPU portions of the code written in the OpenCL 1.1
standard invited the name CLAMR to be adopted. CLAMR is a second-order accurate hy-
drodynamics scheme evolved on a cell-based Cartesian adaptive mesh. CLAMR is built on
a heterogeneous platform utilizing GPU parallelization in tandem with CPU memory man-
agement to achieve significant speed-up and performance. The code was built to be highly
versatile allowing us to test and compare the performance of our developed algorithms across
a variety of architectures.

We evolve the conservative shallow water wave equations using a total variation dimin-
ishing (TVD) finite difference scheme based on a two-step Lax-Wendroff method [10] in
conjunction with a minmod symmetric flux limiter developed by Davis [6] and Yee [18] to
provide an upwind weighted artificial viscosity term. The Lax-Wendroff method is second-
order accurate in space and time, and hence, it is a suitable choice for smooth regions. The
wave equations in conservative form are given by,

∂h

∂t
+

∂(hu)

∂x
+

∂(hv)

∂y
= 0

∂(hu)

∂t
+

∂

∂x

(
hu2 +

1

2
gh2

)
+

∂

∂y
(huv) = 0

∂(hv)

∂t
+

∂

∂x
(hvu) +

∂

∂y

(
hv2 +

1

2
gh2

)
= 0

where h is the height of a column of water, g is the acceleration due to gravity, and u and v are
14

0 100 200 300 400 500 600
 Mesh Compressibility

0.01

0.1

1

10

100

1000

E
x
e
cu

ti
o
n
 T

im
e
 (

s)
 (coarse grid = 256x256 with a maximum 5 levels of refinement)

CPU perfect hash
CPU compact hash
kd_tree

GPU perfect hash
GPU compact hash

 Neighbor Find Timings on the Nvidia Fermi M2090

a.

0 100 200 300 400 500 600
 Mesh Compressibility

0.01

0.1

1

10

100

1000

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

 (coarse grid = 256x256 with a maximum 5 levels of refinement)

CPU perfect hash
CPU compact hash
kd_tree

GPU perfect hash
GPU compact hash

 Neighbor Find Timings on the Nvidia Kepler K20Xm

b.

FIGURE 5.2. Hashing methods improve neighbor find timings in CLAMR on a) a Fermi GPU and b) a Kepler
GPU.

the wave velocities in the x and y directions, respectively. The water is approximated to be
incompressible allowing height to be substituted for mass while the pressure is approximated
as gh2/2. For a more rigorous presentation, see the sections in Landau and Lifshitz [9] on
long gravity waves and shallow-water theory.

We impose several conditions when implementing our cell-based AMR scheme: (i) Two
neighboring cells are allowed to differ by no more than one level of refinement so as to
reduce errors generated by a reflection of information at cell boundaries during the refinement
step. (ii) A cell is refined by symmetrically bisecting along all axes. (iii) Cells are only
refined over regions of physical interest where high resolution is necessary to the calculations.
(iv) Refinement precedes the arrival of steep gradients or wavefronts. (v) Grid elements are
indexed in standard Cartesian coordinates.

The nature of AMR grids will result in patterns of concentrated fine mesh around wave-
fronts and other areas with steep gradients. Also, refinements will come in blocks of 4 for
two-dimensional grids. The randomization of the compact hash is designed to break-up these
patterns and reduce collisions in the hash table while saving considerable memory in com-
parison to the perfect hash.

5.2. Performance Results using CLAMR. Here we explore the performance of perfect
and compact spatial hashing across different devices within the context of a hydrodynamics
application. We attained timings for determining neighbor cells as a function of the com-
pressibility of the mesh using single node processing on Nvidia’s Kepler K20Xm and Fermi
M2090 graphics cards and on the 3.5GH intel i7 CPU as shown in Figure 5.2. In these cal-
culations, we began with a coarse grid of 256 x 256 elements and allowed up to five levels
of refinement. At five levels of refinement, the perfect hash table can exceed 67 million el-
ements. In the wave simulation only a small circular region around the wavefront is refined
and, therefore, the mesh is very compressible. Here we have mesh compressibility calculated
as the ratio of the number of cells at the finest level of the mesh to the number of cells in the
AMR mesh after t = 1000 iterations in the simulation.

The perfect hash achieves higher computational speed at low compressibility, but even-
tually the compact hash has increased speed and reduced memory usage (see Figures 5.2a, b
and Figure 5.3a). This occurs because the compact hash requires extra operations for query-
ing and accessing keys due to data collisions while the perfect hash has higher memory cost
for initializing sparse hash tables. As we increase beyond four levels of refinement, the array
size of the perfect hash becomes exceedingly large offsetting the costs of queries and data
access in the compact hash. In the vicinity of this transition region, the code developer may

15

0 20 40 60 80 100
 Relative Memory (perfect/compact)

0.0

0.5

1.0

1.5

2.0

2.5
 R

e
la

ti
v
e
 S

p
e
e
d
-u

p
 (

p
e
rf

e
ct

/c
o
m

p
a
ct

)
 (coarse grid = 256x256 with a maximum of 5 levels of refinement)

performance transition zone
t=1000, Kepler K20Xm GPU
t=2000, Kepler K20Xm GPU
t=1000, Fermi M2090 GPU
t=2000, Fermi M2090 GPU

 Neighbor Find Speed-Up for Compact vs. Perfect Hashing

a.

0 50 100 150 200 250 300
Number of Cells (thousands)

0

200

400

600

800

1000

1200

E
x
e
cu

ti
o
n
 T

im
e
 (

se
c)

Algorithm Timing Order: Neighbor find

 Fermi_M2090 CPU perfect hash

 Fermi_M2090 CPU compact hash

Fermi_M2090 CPU kd_tree

.60 * n log(n)

.095 * n

b.

FIGURE 5.3. a)Relative memory usage scales linearly with relative performance in compact versus perfect
hashing methods. b) The scaling of the hashing method is an improvment upon the scaling of the k-D tree as the
problem size increases.

taylor the method used to suit the specific need of the problem or available computational
resources.

The performance of the compact hash is rather remarkable. The compact hash on the
CPU is roughly 20x faster than the k-D tree method, and on the GPU it is roughly 200x
faster. Another trend to note in Figures 5.2a,b is that the perfect hash has a slope that ap-
proaches the k-D tree method. By extrapolating the slope, it becomes evident that the perfect
hash will overtake the k-D tree method, becoming slower at some higher mesh compressibil-
ity. However, the compact hash has a slope which tracks the k-D tree method. This trend
demonstrates the scalability of the compact hash with larger problem sets.

In support of the scalability on the CPUs, we show the O(n) behavior of the perfect
hashing method versus the O(n log n) behavior of the k-D tree method in Figure 5.3b. Here
we calculated execution time as a function of number of cells on the coarse grid. Though
the compact hash does not exactly scale with the perfect hash, the figure indicates that its
behavior is closer to O(n) than to O(n log n). These calculations were only performed on
the Fermi GPUs.

To further demonstrate the memory savings of the compact hashing method, we plot
speed-up as a function of memory usage for the perfect hash normalized by the compact hash
in Figure 5.3a. Again, we tested on both the Kepler and Fermi GPUs. Due to the symmetry
of the spherical wave, a longer iteration corresponds to a larger wave radius, and therefore,
the mesh will adapt a larger number of refined cells to capture the steep gradients around
the wavefront. We wanted to see how the compact hash performed as the number of refined
cells increased on a fixed allowable refinement and so we show the results from simulations
at two maximum time iterations, t = 1000, and t = 2000. We see that the performance
improvements of the compact hash scales linearly with the memory usage improvments of the
compact hash. For example, when the memory used by the perfect hash is between 20-40x
the memory needed for compact hashing, we are crossing the threshold where the compact
hash becomes the faster method. Again, the programmer may tailor the method being used
to suit their needs.

6. Conclusions. We extended the perfect hash techniques to a highly parallel compact
spatial hashing method for determining neighbor cells on an AMR grid and showed that com-
pact hashing offers speed-up and memory savings over the perfect hash. We demonstrated
that compact hashing is a memory efficient method of exploiting O(n) algorithms for com-
putational mesh operations. Spatial hashes provide a full range of performance and memory

16

options for the computational code developer, allowing scientific applications to exploit the
performance enhancements of hashing while operating over diverse ranges of resolution in
large problem sets.

We applied spatial hashing methods on AMR grids with 67 million elements at the finest
level of refinement and our results showed a 20x speed-up on the CPU compared to a k-D
tree method and 200x speed-up over the CPU k-D tree on every GPU device tested. Beyond 4
levels of refinement, the compact hash is faster than the perfect hash and reduces the memory
usage by approximately a factor of 30. Hybridization of the perfect and compact methods
gives the developer the ability to tailor the method used to the constraints on time or available
resources. The thread-based parallelism of the compact hash method allows performance
portability on CPU and GPU architectures. CLAMR demonstrates the use and performance
of hashes for applications on future architectures. The application of spatial hashing methods
are ubiquitous in scientific computing.

Future avenues. Hash tables can be employed for spatial operations such as sorts,
remaps, and table lookups; neighbor determination is only one operation which benefits from
the methods we have developed. In the future, data sparsity could be exploited in these opera-
tions to allow the use of a compact hash. These improved algorithms could provide a broader
model for developers to follow when tailoring methods to suit their specific application. The
scalability of hash algorithms in parallel computing with more distributed memory could be
evaluated. Further work on the hash library could also be pursued. Although we implemented
many standard hashing optimizations in the library, there are plenty of other optimizations
that could be explored. The performance of these optimizations and their compatibility with
the hash-based algorithms in the massively parallel environment could be studied.

Acknowledgements. We would like to acknowledge our families who have been con-
tinuous sources of encouragement. A special thanks to Scott Runnels for organizing the won-
derful Computational Summer Physics Workshop, and Los Alamos National Lab for hosting
us. We owe homage to the technical wizards who protect and maintain Darwin, our favorite
experimental architecture computer in CCS-7. Much thanks to Rachel Robey for offering her
wisdom and experience in the matters of hashing. Thanks to the LANL Director’s Office for
partial funding of this work.

REFERENCES

[1] D. A. ALCANTARA, Efficient Hash Tables on the GPU, PhD thesis, UC Davis, 2011.
[2] D. A. ALCANTARA, A. SHARF, F. ABBASINEJAD, S. SENGUPTA, M. MITZENMACHER, J. D. OWENS,

AND N. AMENTA, Real-time parallel hashing on the GPU, ACM Trans. Graph., 28 (2009), pp. 154:1–
154:9.

[3] J. R. BELL, The quadratic quotient method: a hash code eliminating secondary clustering, Communications
of the ACM, 13 (1970), pp. 107–109.

[4] J. L. CARTER AND M. N. WEGMAN, Universal classes of hash functions, Journal of Computer and System
Sciences, 18 (1979), pp. 143–154.

[5] Z. J. CZECH, G. HAVAS, AND B. S. MAJEWSKI, Perfect hashing, Theoretical Computer Science, 182 (1997),
pp. 1–143.

[6] S. F. DAVIS, A simplified TVD finite difference scheme via artificial viscosity, SIAM Journal on Scientific and
Statistical Computing, 8 (1987), pp. 1–18.

[7] H. GAO, J. F. GROOTE, AND W. H. HESSELINK, Efficient almost wait-free parallel accessible dynamic
hashtables, tech. rep., CS-Report 03-03, Eindhoven University of Technology, The Netherlands., 2003.

[8] D. E. KNUTH, Sorting and Searching, vol. 3, Addison-Wesley, 1973.
[9] L. LANDAU AND E. LIFSHITZ, Fluid mechanics. 1987, Course of Theoretical Physics, (1987).

[10] P. LAX AND B. WENDROFF, Systems of conservation laws, Communications on Pure and Applied Mathe-
matics, 13 (1960), pp. 217–237.

17

[11] W. D. MAURER, Programming technique: An improved hash code for scatter storage, Communications of
the ACM, 11 (1968), pp. 35–38.

[12] M. MITZENMACHER AND S. VADHAN, Why simple hash functions work: exploiting the entropy in a data
stream, in Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, So-
ciety for Industrial and Applied Mathematics, 2008, pp. 746–755.

[13] J. K. MULLIN, A caution on universal classes of hash functions, Information Processing Letters, 37 (1991),
pp. 247–256.

[14] J. I. MUNRO AND P. CELIS, Techniques for collision resolution in hash tables with open addressing, in Pro-
ceedings of 1986 ACM Fall Joint Computer Conference, IEEE Computer Society Press, 1986, pp. 601–
610.

[15] W. W. PETERSON, Addressing for random-access storage, IBM Journal of Research and Development, Vol.
1 (1957), pp. 130–146.

[16] R. N. ROBEY, D. NICHOLAEFF, AND R. W. ROBEY, Hash-based algorithms for discretized data, SIAM
Journal on Scientific Computing, 35 (2013), pp. C346–C368.

[17] F. A. WILLIAMS, Handling identifiers as internal symbols in language processors, Communications of the
ACM, 2 (1959), pp. 21–24.

[18] H. YEE, Construction of explicit and implicit symmetric TVD schemes and their applications, Journal of
Computational Physics, 68 (1987), pp. 151 – 179.

18

for a single 𝑔𝑛,ic coefficient across a work-group. If there are not enough terms for all of the work-items, we lose
much of the benefit of parallelization on the GPU, since some of the threads then do no work. One way to remedy
this in practice is to use smaller work-group sizes when dealing with smaller polynomials. However, this solution
has limitations since GPUs are most efficient when the work-group size is a multiple of 32 [6]. A similar drawback
arises if sparsity is not exploited, where the GPU sees a ∼2x slow-down for 3rd order polynomials. is results
from parallelizing along the tensor multiplication loop, where many threads end up multiplying zeros together and
appending them to a sum, again wasting effort.

Second, the data indicates the GPU is increasingly advantageous as it is given more work. As the degrees of free-
dom and number of operations increases, whether from refining the grid or increasing the number of polynomials,
the speedup increases. is reflects the streaming memory model on the GPU, where floating-point operations are
almost free.

Using OpenCL event timers, we can further break down the GPU execution time, to investigate where the GPU
is spending most of the execution time. is is shown in Table 3 for the degree 3 polynomial, 40x40x40 grid case. As

Table 3: GPU Event Timing

Event Time (ms)
Kernel Create 0.1628
Data Send 336.9
Compute 4763

Data Receive 20.14
Total 4784

a perhaps unexpected result, the computations overwhelmingly dominate the execution time. In other applications,
memory transfer operations take up a significant portion of the runtime. However, this case involves a high work
to data ratio, since the method involves a high number of operations relative to the amount of data transferred.
As a result, optimizations that focus on decreasing compute time are more beneficial than memory optimizations,
contrary to the usual case for GPU algorithms.

Note: these times may overlap, so the total compute time is not necessarily the sum of event times.

6 Concluding Remarks
iswork has demonstrated that taking advantage of sparsity, whenever possible, is crucial to developing efficient

algorithms, especially on the GPU. Furthermore, an overall speedup ranging from 2-60x for GPUs over CPUs was
found, advocating the applicability and benefit of GPUs in numerical algorithms, especially for independent segments
of code that benefit from parallelism. ese speedups indicated that more work given to the GPU results in more
speedup, especially when increasing the number of basis functions used. is compliments the results in [4], where it
was found that the discontinuous Galerkin conservative level set method is more effective whenmore basis functions
are used. erefore, accelerating that method via GPUs reaps benefits from multiple angles, making it an excellent
candidate for high order interface tracking and modeling atomization.

Future work to further develop this approach would involve an improved implementation, for instance, ensuring
memory alignment. Porting more segments of code to OpenCL would also be valuable. is is especially true when
there is a direct benefit from GPU architectures, but is also true for code that would not be improved by parallelism,
since it avoids passing data to and from the GPU as much as possible. For instance, it may be beneficial to handle
ghost cell updates on the GPU, allowing multiple time steps to be executed before returning to the CPU. Finally, to
complete the conservative level set method it is necessary to implement a similar scheme for reinitialization, Eq. (6).

𝜕𝐺
𝜕𝜏 + ∇ ⋅ (𝐺 (1 − 𝐺) 𝒏̂) = ∇ ⋅ (𝜀 (∇𝐺 ⋅ 𝒏̂) 𝒏̂) (6)

Reinitialization is best described as a nonlinear companion to the advection equation solved in pseudo-time which
greatly improves mass conservation.

6

Anowledgments
I would like to acknowledge the support of mymentor, Bob Robey, for his invaluable advice and teaching through

the summer. I would also like to thank Sco Runnels, who organized the Los Alamos National Laboratory Compu-
tational Physics Student Summer Workshop 2013, where this work was performed. Finally, I would like to thank
the teams managing the Darwin CCS-7 experimental cluster and the Moonlight ASC cluster, where these algorithms
were tested and benchmarked.

References
[1] B. Cockburn and C.-W. Shu. “Runge–Kua discontinuous Galerkin methods for convection-dominated prob-

lems”. J. Sci. Comput. 16 (2001), pp. 173–261.
[2] I. Duff, R. Grimes, and J. Lewis. User’s Guide for the Harwell-Boeing Sparse Matrix Collection (Release I). 1992.
[3] M. Herrmann. “A balanced force refined level set grid method for two-phase flows on unstructured flow solver

grids”. J. Comput. Phys. 227 (2008), pp. 2674–2706.
[4] Z. Jibben andM.Herrmann. “An arbitrary high-order conservative level set Runge-Kua discontinuousGalerkin

method for capturing interfaces”. ILASS Americas 25th Annual Conference on Liquid Atomization and Spray Sys-
tems (2013).

[5] P. LeSaint and P. A. Raviart. “On a finite element method for solving the neutron transport equation”. In:Math-
ematical Aspects of Finite Elements in Partial Differential Equations. Ed. by C. de Boor. Academic Press, NY, 1974,
pp. 89–123.

[6] NVIDIA OpenCL Best Practices Guide. ver. 1.0. NVIDIA Corporation. 2009.
[7] E. Olsson and G. Kreiss. “A conservative level set method for two phase flow”. J. Comput. Phys. 210 (2005),

pp. 225–246.
[8] E. Olsson, G. Kreiss, and S. Zahedi. “A conservative level set method for two phase flow II”. J. Comput. Phys.

225 (2007), pp. 785–807.
[9] e OpenCL Specification. ver. 1.2. Khronos Group, Inc. 2011.

7

2013 Computational Physics Student Summer Workshop: Final Reports

Eigenfunction Decomposition of
Reactor Perturbations and

Transitions Using MCNP Monte
Carlo

(Forrest Brown, mentor)

LA-UR-13-26449
Approved for public release; distribution is unlimited.

Title: Eigenfunction Decomposition of Reactor Perturbations and Transitions
Using MCNP Monte Carlo

Author(s): Josey, Colin
Veit, Max D.

Intended for: MCNP documentation
Report
Web

Issued: 2013-08-15

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National
Security, LLC for the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.
By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to
publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.
Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the
U.S. Departmentof Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish;
as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Eigenfunction Decomposition of Reactor
Perturbations and Transitions Using

MCNP Monte Carlo

Colin Josey, Max Veit

Computational Physics Workshop

Los Alamos National Laboratory

August 14, 2013

Abstract

Monte Carlo criticality calculations for nuclear reactors have typ-
ically only been able to find the primary eigenvalue and eigenmode.
With the new fission matrix capability in MCNP6, it becomes pos-
sible to solve for higher modes, which are useful in wide variety of
analyses. As a test case of this new capability, two reactor models in
both a base configuration and a perturbed configuration were sim-
ulated in MCNP to generate fission matrices. Tools were written to
find a relatively small number of eigenpairs of the resulting matrices,
whereupon it was found that the implicitly restarted Arnoldi method
outperformed the previously used power iteration as an eigenvalue
algorithm by a factor of 1500 for a 3600 × 3600 sparse matrix. The
primary eigenvalue was then compared to the default MCNP result
and, although the values showed bias with regards to mesh size, the
matrix-derived values had superior statistics. With the eigenvalue
verification complete, the primary eigenmode of the base case was
then projected onto the perturbed core’s eigenspace, where transition
coefficients, simplified quasistatic transitions, and projection errors
were calculated. The projection error typically dropped off after the
first 20 eigenvalues to a value that was stable through the first 100.

1

Eigenfunction Decomposition, MCNP

1 Introduction
Criticality calculations using the MCNP Monte Carlo code determine
the fundamental mode eigenvalue (keff) and eigenfunction (fission
distribution) of a fissile system. These calculations are routinely used
in the design and analysis of critical experiments, nuclear reactor
cores, and criticality safety applications. Recently developed MCNP
capabilities for the fission matrix method permit the calculation of
higher-mode eigenvalues and eigenfunctions. With knowledge of the
higher modes, transitions from the base state of a system to perturbed
states can be analyzed. The state transition parameters characterize
changes to the system induced by material substitutions, geometry
changes, and feedback, and are important for analyzing potential in-
stabilities.

The fission matrix is essentially a spatially discretized Green’s
function for the neutron transport equation. It is a matrix F̄ whose
entries, F̄ij, contain the expected number of next generation fission
neutrons generated in spatial mesh region i by a neutron born in
mesh region j. The eigenvalues and eigenvectors of this matrix will
approximate the eigenvalues and eigenvectors of the reactor. These
approximations are mesh size dependent, but the size of the matrix
goes as the square of the number of cells. For even moderate mesh
sizes, the resulting fission matrix will be massive. Thankfully, it is
also rather sparse. In this report the methods of solving for the eigen-
values and eigenvectors of a very large sparse matrix are detailed.
Tools that analyze the output of the fission matrix from MCNP were
implemented in C++, MATLAB and Python.

Demonstrations of the capabilities of the fission matrix were per-
formed on two reactor models, the Advanced Test Reactor, and a
2D PWR model. These models are frequently used in the testing of
MCNP. These models were then perturbed and the resulting eigen-
pairs were analyzed.

Lastly, as it is very difficult to store all of the data for the fission
matrix itself, additionally storing the squares of the tallies that gen-
erated it to calculate statistics is not implemented as of yet. By using
a moderate quantity of MCNP runs with varying starting seeds, the
statistics can roughly be approximated. The same two models used
for testing MCNP as before were used here as well.

LANL Computational Physics Workshop 2013 2 of 28

Eigenfunction Decomposition, MCNP

2 Theory
First, the theory and physics underlying the concept of fission ma-
trices is summarized, and the linear algebra behind transition coef-
ficients investigated. The predominant algorithms used for finding
eigenpairs of large, sparse, asymmetric matrices are also listed and
briefly discussed.

2.1 Fission Matrices
The utility of a fission matrix is rooted in the neutron transport equa-
tion. Through no approximation other than a simple spatial dis-
cretization, the neutron transport equation

MΨ(r, E, Ω̂) =
1
k

χ(E)
4π

S(r) (2.1)

can be integrated over space and energy into the form

s =
1
k

F̄s, (2.2)

where s is the source distribution vector and F̄ is the fission matrix
as defined before [1]. As shown, it is clear that this is an eigenvalue
problem, with k as the eigenvalue and s as the eigenfunction. As all
components are matrices, vectors, or scalars, this equation lends itself
well to a linear algebra solution.

The solutions of this eigenvalue problem are especially useful for
a specific type of analysis, namely, computing transition coefficients
for reactor perturbations. First, assume the reactor configuration in-
stantaneously changes, through e.g. a geometry or a material prop-
erty change. In this situation, one would like to know how the reac-
tor’s initial fission source distribution can be represented in terms of
eigenmodes of the fission matrix of the new configuration. In partic-
ular, one would like to be able to express any of the initial configura-
tion’s eigenmodes in terms of this new partial basis.

Let {ui} be the set of eigenmodes of the fission matrix of the initial
configuration, and {vi} be the set of eigenmodes in the final config-
uration. Assuming the fission matrix for the final state has at least m
linearly independent eigenmodes {vi}m

i=1, then any source distribu-
tion s can be approximated by its projection onto the space spanned
by these m modes. This approximation can be considered optimal (in

LANL Computational Physics Workshop 2013 3 of 28

Eigenfunction Decomposition, MCNP

the sense that it minimizes the norm of the residual) if the set of right
eigenmodes is orthogonal.

Applying the above expansion to the i-th eigenmode of the initial
fission matrix, ui, gives:

ui ≈ um
i =

m−1

∑
j=1

Cijvj. (2.3)

The j-th expansion coefficient Cij can be extracted by exploiting the

fact that the system of forward and adjoint modes
{(

sk, s†
k

)}d
k=0 of

a diagonalizable matrix forms a biorthogonal system; i.e., with the
appropriate normalization,〈

sl , s†
m

〉
= δlm. (2.4)

The notation 〈a, b〉 denotes the inner product on Cn, which for the
purposes of this report is defined as b∗a. This product is linear in the
first argument and conjugate-linear in the second, a property called
‘sesquilinearity’.

The adjoint modes are the left eigenvectors of the fission matrix.
In practice, they can be computed by taking the eigenvectors of its
transpose. In the general case, the resulting vectors are the complex
conjugates of the adjoint modes. This is usually not a problem, since
it is usually assumed that the eigenmodes of a fission matrix will be
real. Although this fact has not been theoretically proven, numerical
evidence bears it out within the limits of statstical variation [1].

Relation (2.4) holds, albeit in a restricted sense, even if a complete
system of eigenvectors does not exist for a given fission matrix; see
Appendix A. Using this fact, one can write, using the linearity of the
dot product in its first argument,

Cij =
〈

ui, v†
j

〉
=

N

∑
k=1

Cik

〈
vk, v†

j

〉
=

N

∑
k=1

Cikδkj, (2.5)

assuming the final eigenmodes are normalized such that Relation (2.4)
holds.

The approximation um
i can then be constructed using the transi-

tion coefficients
{

Cij
}m

j=1 and the eigenvectors
{

vj
}m

j=1.

LANL Computational Physics Workshop 2013 4 of 28

Eigenfunction Decomposition, MCNP

Once these transition coefficients are known, a quasistatic model
of the transition from the base to the perturbed state is:

scurrent =
N

∑
j=1

C1,j

(
k j

k1

)n

vj, (2.6)

where n is the current neutron generation and N is the total number
of eigenvalues.

2.2 Eigenvalue Solvers
The fission matrix F̄ is nonsymmetric and tends to be a large, sparse
matrix. As such, it is very difficult to store without using a sparse
storage scheme. This severely constrains the choice of eligible algo-
rithms. For example, the implicit QR algorithm, the eigenpair solver
of choice for dense matrices, requires a transformation into upper
Hessenberg form [2]. Such transformations tend to cause fill-in of the
formerly empty elements, causing what was once a sparse matrix to
occupy more than half of the space of a full version of the matrix.
Further, the resulting matrix of eigenvectors will be nearly full. Most
computers cannot handle matrices so large.

An alternative comes in the form of Krylov subspace solvers. The
primary advantage of such solvers is the iterative mode of calculation
that performs only matrix-vector math with the sparse fission matrix,
so the problem of fill-in is avoided. The most simple Krylov subspace
solver is the power iteration method. This simple algorithm is robust
and effective, but has two major flaws. For one, to get more than the
first eigenpair requires some sort of deflation, such as Hotelling de-
flation [3, pp. 85-96]. Secondly, the convergence of the power method
is linear and governed by the factor |λ1/λ2|, also known as the dom-
inance ratio [4]. When this ratio is close to one, the convergence of
this method can be extremely slow.

More advanced Krylov subspace solvers such as implicitly restarted
Arnoldi method (IRAM) address both issues. IRAM can solve for
more than one eigenpair at a time and it has (usually) superlinear
convergence [5]. All math done with regards to the fission matrix is
in matrix-vector form. Two matrices are stored separately from the
fission matrix. Matrix V has columns of the same length as the fission
matrix, but a number of rows equal to m, a variable that is between
2-3x as large as the total number of eigenpairs needed. The columns

LANL Computational Physics Workshop 2013 5 of 28

Eigenfunction Decomposition, MCNP

are, once sorted, the resulting eigenvectors of the problem. Matrix H
is an upper Hessenberg matrix of size m by m whose eigenvalues are
the eigenvalues of the fission matrix [3, pp. 128-136].

3 Methodology
Several steps were involved in the investigation of the fission matrix
capability. First, in order to study transitions and transition coeffi-
cients, reactor models were needed in both an initial and final state.
Then, a tool was needed to find the eigenpairs of both systems effi-
ciently. These tools were finally expanded to perform numerous data
manipulations and plot the results.

3.1 Reactor Model Modification
A main goal of the project was to test the fission matrix capability on a
reasonably complex analysis problem. The problem of finding tran-
sition coefficients between two reactor models was chosen for this
purpose. This analysis requires perturbed versions of base-case reac-
tor models, as well as the base models themselves. If the two mod-
els were too different, the transition coefficients would be essentially
meaningless, so the alterations were done in such a way to signifi-
cantly alter the flux while at the same time not significantly altering
the geometry. For the ATR case, four of the control drums S3, S4,
W1, and W2 were rotated 50◦, moving beryllium closer and hafnium
away from the core. The core model, before and after, is shown in
Figure 1.

For the 2-D PWR core, control rods consisting of type 304 stainless
steel were inserted in each assembly in the upper right quadrant of
the core. A comparison is also shown in Figure 2. Note that the region
chosen is asymmetric in that it does not represent a true rotationally
symmetric quarter of the core; this fact has significant consequences
for the eigenmodes of the perturbed case as well as the transition
coefficients in between the states.

3.2 Fission Matrix Generation
Currently, as of August 2013, published versions of MCNP6 do not
contain the full fission matrix capability. The commands described

LANL Computational Physics Workshop 2013 6 of 28

Eigenfunction Decomposition, MCNP

(a) ATR Full Core (b) ATR Original (c) ATR Modified

Figure 1: ATR Core Modifications

(a) PWR Full Core (b) PWR Original (c) PWR Modified

Figure 2: PWR Core Modifications

LANL Computational Physics Workshop 2013 7 of 28

Eigenfunction Decomposition, MCNP

below will work, but no fission matrix will be output. Further, as
time goes on, the method of generating fission matrices as well as
their output format will likely change as they are not precisely user
friendly at the moment. This part of the report will detail how current
versions of MCNP6 internal to LANL operate with regards to fission
matrices.

In order to enable fission matrices, two cards must be present in
the input deck. First, the mesh extent from the HSRC card is used
as the extent for the fission matrix. As such, the HSRC card must be
included. The number of cells along each axis will not be used, how-
ever, as the fission matrix usually needs to be finer than the Shannon
entropy mesh. The second is the KOPTS card. The KOPTS card defines
the options for KCODE, and contains the settings for the fission matrix.
KOPTS has the following form:

KOPTS ...several-unrelated-options...

fmat= (yes/no)

fmataccel= (yes/no)

fmatskip= n

fmatncyc= n

fmatnbr= n

fmatnbrx= n

fmatnbry= n

fmatnbrz= n

The meaning of these options is summarized in Table 1.
As long as both commands are present, MCNP will keep the fis-

sion matrix tallies internally. If fmataccel = yes, the resulting pri-
mary eigenfunction from solving the fission matrix will be used to
split or roulette KCODE source neutrons in each cell to closer match
the source distribution. This has some advantages, as the fission ma-
trix primary eigenmode will be more accurate than the initial guess
or any unaltered KCODE results prior to convergence. Current ver-
sions of MCNP do not save the fission matrix, but in-development
versions do. The resulting file is fmat_file. The structure of this file
as currrently implemented is discussed in the following sections.

3.3 Eigenvalue Tool Exploration
By default, the current development versions of MCNP6 output the
fission matrix as an unformatted binary file as written by a Fortran-

LANL Computational Physics Workshop 2013 8 of 28

Eigenfunction Decomposition, MCNP

command Description
fmat= yes Enables fission matrix

fmataccel= yes Enables using the fission matrix primary
eigenmode to accelerate the convergence of
KCODE

fmatskip= n Skips n cycles before tallying fission matrix

fmatncyc= n Solves for keff and dominance ratio every n cy-
cles

fmatnbr= n Total number of entries available for the sparse
matrix.

fmatnbrx= n Sets number of cells in the x-axis to n

fmatnbry= n Sets number of cells in the y-axis to n

fmatnbrz= n Sets number of cells in the z-axis to n

Table 1: KOPTS Options

LANL Computational Physics Workshop 2013 9 of 28

Eigenfunction Decomposition, MCNP

based code. These files are not human-readable, and their structure
is machine and compiler dependent. A Fortran-based tool already
existed that would read the fission matrix, perform power iteration,
and output several text and PostScript files containing results and
plots. This worked well on smaller fission matrices on the order of
N = 10000 rows, but beyond that, the calculation time was unrea-
sonably high. Two different approaches (with a third later) were un-
dertaken to expedite the calculation process. The first approach used
Python interfaced with ARPACK [6], the second was a custom C++
implementation of Arnoldi iteration, and the third used MATLAB,
again interfaced with ARPACK.

Each toolset had in common the same general steps necessary
to perform the analysis: First, it read in the initial and final (per-
turbed) fission matrices from their native binary formats. Second, the
tool normalized each matrix’s rows against the corresponding fission
source tally, since the matrices were saved in the form of raw tallies.
Third, it extracted the forward and adjoint eigenvalues of the result-
ing sparse matrix. Finally, it obtained transition coefficients by tak-
ing dot products between the initial forward and final adjoint eigen-
modes. These results were then visualized and interpreted.

3.3.1 Python

One approach to extracting the eigenmodes from the fission matrices
used an interactive Python analysis system1 equipped with several
useful libraries. The system used the NumPy package for numerical
computing, as well as the SciPy package’s sparse-matrix capabilities,
which included an interface to the freely available ARPACK sparse-
matrix eigenvalue solver [6]. Plots and visualizations were generated
using the Matplotlib visualization package.

The system proved effective at reading in the generated fission
matrices in Fortran unformatted-binary sparse storage format and
finding a small (80 or fewer) number of eigenvectors and -values.
As an illustrative example, the eigensolver routine took 163 seconds
to solve for the 80 forward modes of the unperturbed case with N =
57600; the adjoint case usually took longer (212 seconds in this case)

1Technical details: Enthought Python Distribution 7.3-2 (64-bit) (https://www.
enthought.com/) with Python 2.7.3, SciPy 0.10.1, NumPy 1.6.1, Matplotlib 1.1.0, and
IPython 0.12.1 for interactive use.

LANL Computational Physics Workshop 2013 10 of 28

https://www.enthought.com/
https://www.enthought.com/

Eigenfunction Decomposition, MCNP

because of the additional cost of multiplying by the transposed fis-
sion matrix; see Section 4.1.

The prime disadvantage of the Python system is that it did not
have parallel processing capability in the standard configuration. A
parallel implementation of ARPACK is available [6]; however, the
SciPy package apparently only links to the serial version. Moreover,
the sparse matrix-vector products themselves must be performed by
SciPy; this procedure is apparently also implemented serially in stan-
dard configuration.

3.3.2 C++

Initially, the C++ code, called eigtest, was simply a matrix math li-
brary that would implement just enough matrix math to do power
iteration so that the person writing it could relearn the programming
language. After finding out about the massive speedup possible con-
verting from power iteration to the implicitly restarted Arnoldi method,
the tool was converted to mimic a reference implementation written
in MATLAB [7]. Portions of the original F90 code were merged in
to provide for reading the fission matrix files. After a few weeks,
however, the implementation was not converging correctly, and due
to limited time, it was scrapped. The ability for the tool to read and
write the matrix in a few different formats proved useful later on in
the MATLAB implementation.

3.3.3 MATLAB

Although it may seem a bit strange to implement this code in both
Python and MATLAB, during the C++ implementation, a large amount
of MATLAB backend was written before the Python implementation
was complete. In general, the MATLAB capability is very similar to
the Python one and was used for the core step-by-step transition cal-
culations and the statistics2.

3.3.4 Fortran ARPACK Interface

Near the end of the project, another interface was developed for AR-
PACK, written in Fortran 90 and using parallel sparse-matrix vector

2Technical details: Matlab version R2013a

LANL Computational Physics Workshop 2013 11 of 28

Eigenfunction Decomposition, MCNP

products. By that time, however, most of the work requiring eigen-
value solvers was completed, so it was not extensively tested.

3.4 Verification
It is not clear to what extent the algorithms and implementation of
ARPACK have been verified. Therefore, two simple independent
checks were undertaken to verify that ARPACK was indeed return-
ing results with the advertised properties.

The nature of the eigenvalue problem admits a straightforward
method of verification: Given a computed solution (vC, λC) to the
problem Av = λv, the residual r = AvC − λCvC can be computed,
and its properties (e.g. norm) investigated to assess whether the com-
puted answer solves the problem to the desired tolerance. A residual
was considered acceptable if its l2 norm did not considerably exceed
the number of mesh cells used times the machine epsilon. This was
indeed found to be the case for a set of 80 eigenvalues extracted both
from the PWR and the ATR cases. We suspect this check is already
done internally in ARPACK, but since no concrete evidence of such a
check could be found, an independent verification was seen as justi-
fied. This independent check also guarded against any possible fail-
ure conditions in ARPACK that would not have been reported back
to the user.

Another important criterion on the set of eigenvectors returned
by ARPACK is that they be linearly independent; this property can
be checked using a singular value decomposition of the matrix of
eigenvectors. For both the PWR and the ATR test cases, it was indeed
the case that all 80 singular values of the matrix of eigenvectors were
clearly nonzero, i.e. many orders of magnitude larger than machine
precision.

4 Results
The two different test problems, PWR and ATR, were run in MCNP
with different parameters. A summary of the parameters used is in
Table 2. These two runs generated fission matrices that were 4.8 GB
and 32 MB in size for the PWR and ATR respectively. Both runs had
enough cycles discarded to be converged for KCODE. The choice of fis-
sion matrix mesh size depends on the reactor being studied as well

LANL Computational Physics Workshop 2013 12 of 28

Eigenfunction Decomposition, MCNP

Reactor 2D PWR ATR
Cycles 300 500
KCODE Active Cycles 200 400
fmatskip 3 3
fmatnbrx 480 100
fmatnbry 480 100
fmatnbrz 1 1
Neutrons/cycle 4 million 100 thousand

Table 2: MCNP6 run details

Matrix Size IRAM (ARPACK) Power Iteration
3600× 3600 3.09 s 4878 s
900× 900 0.234 s 353 s
225× 225 0.0337 s 30.6 s

Table 3: IRAM vs. Power Iteration for Various Matrix Sizes

as computational resources. For example, the PWR has low connec-
tivity between distal regions of the core, owing to its great size. This
is reflected in the fission matrix as a very high sparsity and thus, low
memory usage. The opposite case is true for the ATR. As such, the
ATR was typically run with a smaller mesh. A smaller mesh also re-
quires fewer neutrons for statistical reasons. However, it is always
beneficial to calculate with as large a mesh as possible, because the
fission matrix can be aggregated into a smaller one as needed.

In practice, the fission matrix used for the PWR was aggregated
by a factor of two, reducing it in size from 230400 to 57600 rows. This
made the eigenvalue solve times much more tractable and improved
the statistical properties of the resulting eigenmodes.

4.1 Solver Timings
A quick speed comparison was done between the two algoritms avail-
able. The runs were done on 1 CPU, and the first 16 eigenmodes and
16 adjoint eigenmodes were solved for. These runs are summarized
in Table 3. As shown, a speedup of approximately 1500-fold was ex-

LANL Computational Physics Workshop 2013 13 of 28

Eigenfunction Decomposition, MCNP

Number of Unperturbed Perturbed
Modes Forward Adjoint Forward Adjoint
20 95 s 110 s 120 s 149 s
40 129 s 170 s 105 s 143 s
80 163 s 212 s 148 s 196 s

Table 4: Timings of the IRAM eigenvalue algorithm, as implemented
by SciPy (see Section 3.3.1), on the PWR problem with N = 57600
rows.

perienced in switching algorithms on the 3600× 3600 matrix.
Additionally, a preliminary investigation was done to investigate

how the time taken by Arnoldi iteration scales with mesh size and the
number of modes requested. The results are summarized in Table 4,
from the PWR problem with N = 57600 rows. The times were com-
puted both for the forward and adjoint mode solves. The given times
are best out of 3 runs on a fairly capable multi-user machine. An im-
portant caveat on these timings is that a surprisingly large amount of
variation was observed in the eigenvalue-solve timings, particularly
on a spatial mesh with N = 230400.

Since not enough time was available to study the statistical prop-
erties of these timings in more detail, they are presented here only
in order to illustrate some interesting general properties of the al-
gorithm’s runtime. First, note that the algorithm took consistently
more time solving the adjoint problem than the forward problem;
this is likely due to the overhead involved in transposing a CSR-
stored sparse matrix, or computing matrix-vector products with its
transpose. Second, the scaling as a function of number of eigen-
modes requested is much weaker than one would expect given the
known complexities of the individual components of the algorithm.
This fact hints at the nontrivial convergence properties of the implic-
itly restarted Arnoldi method, as does a surprising result where it
took longer to solve for 40 modes than for 80 modes of the matrix of
the PWR problem with N = 230400 rows (1130 seconds versus 793
seconds, best of 6 runs each).

LANL Computational Physics Workshop 2013 14 of 28

Eigenfunction Decomposition, MCNP

4.2 Eigenmodes
Using the techniques described earlier, the eigenpairs of the resulting
matrices were solved for and plotted. Figure 3 shows the first 4 eigen-
modes and adjoint eigenmodes of the initial and final configuration
of the core. The same was done for the ATR in Figure 4. Comparing
the original to the modified for the PWR, it becomes clear that the
insertion of the control rods has significantly depressed a quadrant
of the fundamental mode. The slight asymmetry in the perturbation
also becomes noticeable in the higher modes. As for the ATR, the
lobe that is surrounded by the moved control barrels is more active
than the rest of the core. This is essentially as expected.

4.3 Transition Coefficients
Using a set of 40 eigenmodes calculated from each fission matrix,
the transition coefficients were calculated and mapped into a grid.
The PWR and ATR transition coefficients are plotted in Figure 5. The
PWR transition coefficients give hints as to the more intricate transi-
tion occuring. The insertion of control rods in an asymmetric region
of the core is not nearly as uniform an alteration as moving four adja-
cent control barrels by the same amount, and has a very strong spatial
dependence.

4.4 Transitions
For the ATR, these coefficients were used to reconstruct a very ba-
sic stepwise transition. This is shown in Figure 6, along with what
should be the original and final source distributions. Very slight dif-
ferences are evident between the original and the generation 0 result,
hinting that the reconstruction is not exact due to the limited number
of eigenmodes used. Had the entire set of eigenvalues been calcu-
lated, this reconstruction would not be as imprecise.

The transition is found to be relatively smooth with the major-
ity of sources propagating into the lobe of the core with the rotated
control drums. The transition is mostly completed after 15 neutron
generations, which, ignoring delayed neutrons and other reactions
such as temperature dependence that will alter the transition, is a
very short time. These plots can be seen as an approximation of the
prompt jump at the beginning of a reactor configuration change.

LANL Computational Physics Workshop 2013 15 of 28

Eigenfunction Decomposition, MCNP

(a) PWR Original (b) PWR Modified

Figure 3: Eigenvectors of the 2D PWR

LANL Computational Physics Workshop 2013 16 of 28

Eigenfunction Decomposition, MCNP

(a) ATR Original (b) ATR Modified

Figure 4: Eigenvectors of the ATR

LANL Computational Physics Workshop 2013 17 of 28

Eigenfunction Decomposition, MCNP

Figure 5: Transition Coefficients

4.5 Reconstruction Error
The error between the fundamental mode and its reconstruction in
the space spanned by the perturbed eigenmodes was also studied.
The initial fundamental mode was reconstructed with various quan-
tities of eigenmodes in the final configuration and the l2 norm of the
difference between the two was calculated. The differences for both
reactors with 40 eigenmodes are plotted in Figure 7, with the eigen-
mode count dependence plotted in Figure 8. It is clear that the more
symmetric perturbation in the ATR core has made the transition co-
efficients rather simple. It takes relatively few transition coefficients
to properly reconstruct the initial modes. The rather complex pertur-
bation done to the PWR causes a more spread-out set of transition
coefficients, indicating the larger number of perturbed modes neces-
sary to reconstruct any given initial mode.

4.6 Statistics
One primary drawback to the fission matrix method is that it is al-
ready quite difficult to store even rather small fission matrices. As

LANL Computational Physics Workshop 2013 18 of 28

Eigenfunction Decomposition, MCNP

(a) ATR Original (b) ATR Generation 0

(c) ATR Generation 5 (d) ATR Generation 10

(e) ATR Generation 15 (f) ATR Final

Figure 6: ATR Transition from Start to Final

LANL Computational Physics Workshop 2013 19 of 28

Eigenfunction Decomposition, MCNP

(a) PWR (b) ATR

Figure 7: Reconstruction Error

Figure 8: Reconstruction Error by Eigenmode Count

LANL Computational Physics Workshop 2013 20 of 28

Eigenfunction Decomposition, MCNP

k̄1 σk̄1
k̄2 σk̄2

KCODE 0.995077 0.000023 N/A N/A
50× 50× 50 mesh 0.995017 0.000021 0.900928 0.000033
25× 25× 25 mesh 0.995011 0.000021 0.898198 0.000033
10× 10× 10 mesh 0.994977 0.000021 0.879747 0.000036
5× 5× 5 mesh 0.994924 0.000021 0.831998 0.000042

Table 5: Statistics of Runs

such, storing the squares of the tallies necessary to do error propaga-
tion in MCNP is not implemented. As such, the only way to measure
statistics is to repeatedly run the same problem over and over again
with different starting seeds until there are enough datapoints to cal-
culate the variance of the sample.

To see if resolution has any impact on statistics, the ATR run was
modified to use a 50× 50× 50 mesh for the fission matrix, generating
a 125000× 125000 fission matrix. 25 runs were done and the mesh
was aggregated into smaller meshes of size 25× 25× 25, 10× 10× 10,
and 5 × 5 × 5. The average of the resulting values along with the
standard deviation of those values is summarized in Table 5.

It is worth noting that the statistics do get worse with decreasing
mesh size, but, for example, the 5× 5× 5 k2 is not equal to the 50×
50× 50 k2, even within statistical variation. It appears that there is
a significant bias effect for the non-fundamental modes at play with
regards to mesh size. The same can be said of the 50 × 50 × 50 k1
value as compared to the KCODE k1, but not to the same extreme. σk1

for all fission matrix runs was smaller than KCODE’s, likely owing to
the greater number of cycles contributing to the final result.

Another interesting test was to find the statistics on the first 100
eigenvalues for the 50 × 50 × 50 run. This turned up a surprising
result shown in Figure 9. Further exploration showed that mode 27
from run 20 had some regions inside of it with abnormally large val-
ues, as shown in Figure 10. The average mode is the one with run
20 removed but the other 24 combined. Removing all values above
a certain threshold, the run 20 mode 27 is once again similar to the
average, as shown in Figure 11, implying that the small number of
very large values that caused the shift are likely statistical noise. Fur-
ther, removing mode 20 completely from all calculations yields the
statistics shown in Figure 12.

LANL Computational Physics Workshop 2013 21 of 28

Eigenfunction Decomposition, MCNP

Figure 9: Standard Deviation by Eigenmode

5 Future Work
During the course of this work, many avenues for improvement and
future investigation were uncovered. Many of these avenues were
not pursued due to time constraints, so they are presented here as
recommendations for continuations of this work by future groups.

First, improvements are possible in the algorithms themselves.
The algorithms in ARPACK as it is typically implemented are not
parallel. Since most of the time is spent doing matrix-vector math,
parallelizing at least that component of the calculation is in princi-
ple fairly straightforward. This would be a benefit especially for ex-
tremely large matrices, where it can still take a large amount of time
to solve for any useful number of eigenvectors.

Another ongoing point of concern is the existance of imaginary
components that occasionally appear in the eigenvalues of the fis-
sion matrix. This phenomenon was observed during the course of
this project, but not systematically investigated. It is investigated in
[1], which makes the preliminary conclusion that the imaginary com-
ponents appear to be solely due to statistical variation. However, a
more thorough investigation of these components with a larger pa-
rameter space would be necessary in order to gather convincing evi-
dence of this suspicion.

LANL Computational Physics Workshop 2013 22 of 28

Eigenfunction Decomposition, MCNP

(a) Run 20 - Mode 26 (b) Run 20 - Mode 27 (c) Run 20 - Mode 28

(d) Average - Mode 26 (e) Average - Mode 27 (f) Average - Mode 28

Figure 10: Mode Comparison in 3D, Run 20 vs. Average

LANL Computational Physics Workshop 2013 23 of 28

Eigenfunction Decomposition, MCNP

(a) Run 20 - Mode 27 - Modified (b) Average - Mode 27

Figure 11: Mode Comparison in 3D, Run 20 vs. Average, With
Abnormal Values Removed

Figure 12: Standard Deviation With and Without Run 20

LANL Computational Physics Workshop 2013 24 of 28

Eigenfunction Decomposition, MCNP

Finally, only a limited set of perturbations were explored in this
project, and more interesting ones may be possible. For example, one
might investigate the transitions from a core in cold-clean conditions
to hot-clean conditions. It might also be interesting to investigate
other temperature effects, void effects, or xenon oscillations. In prin-
ciple, any type of transition can be investigated providing MCNP has
the capability to simulate the perturbed case.

6 Conclusion
Fundamentally, most of the groundwork for using the fission matri-
ces that MCNP produces has been completed. It is relatively cost-
effective to generate fission matrices with meshes of acceptably fine
resolution, with the primary limiters being memory and storage space.
Large matrices provide more accurate results as long as the statistics
are sufficient, and if they are not, the matrix can be reduced in size
until they are sufficient. By switching from the power method to the
implicitly restarted Arnoldi method, speedups on the order of 1500
fold were attained, proving this an effective algorithm for handling
these large matrices. The calculated eigenvalues converged towards
the KCODE result with expanding matrix size, and also appeared to
have superior statistical properties due to the reduced number of dis-
carded cycles, with the notable caveat of a bias appearing for insuf-
ficiently fine mesh resolutions. Lastly, the fundamental mode can be
reconstructed in a perturbed space with relatively small errors with
few eigenmodes used.

7 Acknowledgements
We would like to gratefully acknowledge the guidance of our mentor,
Forrest Brown, and everyone else at Los Alamos National Laboratory
who made the Computational Physics Worshop and this project pos-
sible, especially Scott Runnels, the organizer of the workshop.

References
[1] Forrest B. Brown, Sean E. Carney, Brian C. Kiedrowski, and

William R. Martin. Fission matrix capability for MCNP, part I -

LANL Computational Physics Workshop 2013 25 of 28

Eigenfunction Decomposition, MCNP

Theory. Technical Report LA-UR-13-20429, Los Alamos National
Laboratory, May 2013. URL https://laws.lanl.gov/vhosts/

mcnp.lanl.gov/pdf_files/la-ur-13-20429.pdf. Intended for
Mathematics & Computation 2013, Sun Valley, ID, USA.

[2] David S Watkins. Understanding the QR algorithm, part
II. URL http://www.researchgate.net/publication/

228966308_Understanding_the_QR_algorithm_Part_II/file/

79e4150e24b0e6b291.pdf.

[3] Y. Saad. Numerical Methods for Large Eigenvalue Problems-
classics edition. SIAM, Philadelpha, PA, 2011. doi: 10.
1137/1.9781611970739. URL http://dx.doi.org/10.1137/1.

9781611970739.

[4] James S Warsa, Todd A Wareing, Jim E Morel, John M McGhee,
and Richard B Lehoucq. Krylov subspace iterations for determin-
istic k-eigenvalue calculations. Nuclear Science and Engineering,
147(1):26–42, 2004.

[5] Bernhard Beckermann and Stefan Güttel. Superlinear conver-
gence of the rational Arnoldi method for the approximation of
matrix functions. Numerische Mathematik, 121(2):205–236, 2012.

[6] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK
Users’ Guide, October 1997. URL http://www.caam.rice.edu/

software/ARPACK/.

[7] Danny Sorensen. Caam 551: Advanced numerical linear algebra,
matlab code, 2011. URL http://www.caam.rice.edu/~caam551/

MatlabCode/matlabcode.html.

A Biorthogonality Relation
For an N× N matrix A with N distinct eigenvalues and a set of right
eigenvectors {ri} and associated left eigenvectors {li} (here written
as column vectors), the following relation holds:〈

Arj, li
〉

=
〈
λjrj, li

〉
=
〈
rj, A∗li

〉
=
〈
rj, λ∗i li

〉
(A.1)

LANL Computational Physics Workshop 2013 26 of 28

https://laws.lanl.gov/vhosts/mcnp.lanl.gov/pdf_files/la-ur-13-20429.pdf
https://laws.lanl.gov/vhosts/mcnp.lanl.gov/pdf_files/la-ur-13-20429.pdf
http://www.researchgate.net/publication/228966308_Understanding_the_QR_algorithm_Part_II/file/79e4150e24b0e6b291.pdf
http://www.researchgate.net/publication/228966308_Understanding_the_QR_algorithm_Part_II/file/79e4150e24b0e6b291.pdf
http://www.researchgate.net/publication/228966308_Understanding_the_QR_algorithm_Part_II/file/79e4150e24b0e6b291.pdf
http://dx.doi.org/10.1137/1.9781611970739
http://dx.doi.org/10.1137/1.9781611970739
http://www.caam.rice.edu/software/ARPACK/
http://www.caam.rice.edu/software/ARPACK/
http://www.caam.rice.edu/~caam551/MatlabCode/matlabcode.html
http://www.caam.rice.edu/~caam551/MatlabCode/matlabcode.html

Eigenfunction Decomposition, MCNP

so 〈
rj, li

〉
(λi − λj) = 0 (A.2)

by sesquilinearity of the dot product defined in Section 2.1. This
means that for λi 6= λj, the product 〈rj, li〉 = 0. Therefore, since the
matrix A and its complex conjugate transpose A∗ have sets of eigen-
values that are complex conjugates of each other, the sets of left and
right eigenvectors {li} and

{
rj
}

form a biorthogonal system.
In the more general case in which A has repeated eigenvalues,

which is often observed to be the case with fission matrices, a more
general relation is needed which makes use of the Jordan normal
form. Any square matrix can be decomposed in the form A = RJR−1,
where J is a block-diagonal matrix where the individual blocks are
Jordan blocks, which have an eigenvalue on the diagonal and ones
on the superdiagonal. The number of Jordan blocks corresponding
to an eigenvalue λi is equal to its geometric multiplicity, or the num-
ber of linearly independent eigenvectors corresponding to that eigen-
value (= dim Null(A− λi I)). All semi-simple eigenvalues, i.e. those
that have a geometric multiplicity equal to their algebraic multiplicty
(their multiplicity as roots of the characteristic polynomial of A), have
Jordan blocks of size 1. For more details, see [3, pp. 14-15] or any
standard textbook on linear algebra. For the purposes of illustration,
a Jordan block of the eigenvalue λi has the form:

λi 1

λi
. . .
. . . 1

λi


Writing the above decomposition in the form AR = RJ, it can be

seen that R contains all the right eigenvectors of A. The set of indices
of the columns in R that comprise the eigenvectors of the matrix A is
the set of (column) indices in J where each new Jordan block starts;
this is the set of indices at which a column vector of R is scaled by the
corresponding λi through the matrix multiplication.

Alternatively, the decomposition can be written R−1A = JR−1, or,
letting L = R−1, LA = JL. This form reveals that L contains all the
left eigenvectors of A in its rows. This time, however, the eigenvectors
occur at a different set of (row) indices: By inspecting the properties

LANL Computational Physics Workshop 2013 27 of 28

Eigenfunction Decomposition, MCNP

of left-multiplication of a matrix by a Jordan block, one can see that
the true eigenvectors occur at the set of indices where each Jordan
block ends; these are the indices at which a row vector in L is scaled
by the corresponding λi in the matrix multiplication.

Since LR = I, the identity matrix, the rows {li}N
i=1 and the columns

{ri}N
i=1 form a biorthogonal basis of CN . From this fact, it is possi-

ble to make a restricted conclusion regarding the biorthogonality of
eigenvectors of a matrix: The sets of left and right eigenvectors of a
matrix, with those vectors deleted that do not correspond to semi-
simple eigenvalues, form a biorthogonal system. This is because, for
semi-simple eigenvalues, the corresponding left and right eigenvec-
tors have the same row indices in L as column indices in R, since Jor-
dan blocks corresponding to semi-simple eigenvalues always have
size 1.

This manipulation of the Jordan normal form offers another in-
sight in the case where the fission matrix F̄ does not have a complete,
linearly independent set of eigenvectors: One can augment the exist-
ing eigenvectors with principal vectors from the Jordan normal form,
forming two complete biorthogonal bases of CN in which any arbi-
trary source distribution can be written as s = ∑N

i=1 aili, for example
(see Section 2.1). More care is required, however, in extracting the
j-th transition coefficient via aj =

〈
s, rj

〉
. The index j is an index

into a column of R, which includes principal vectors from the Jordan
normal form. Taking into account the above-mentioned indexing ir-
regularities, this means that while lj may be an eigenvector, this does
not imply that rj is as well, and vice versa.

LANL Computational Physics Workshop 2013 28 of 28

2013 Computational Physics Student Summer Workshop: Final Reports

Modeling X-ray Thomson scattering
spectra of warm dense matter

(Didier Saumon and Charles Starrett,

mentors)

LA-UR-13-26717
Approved for public release; distribution is unlimited.

Title: Modeling X-ray Thomson scattering spectra of warm dense matter

Author(s): Perkins, David J.
Souza, Andre N.
Saumon, Didier
Starrett, Charles E.

Intended for: Report
Web

Issued: 2013-08-26

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National
Security, LLC for the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.
By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to
publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.
Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the
U.S. Departmentof Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish;
as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Modeling X-Ray Thomson Scattering Spectra of Warm Dense Matter

David Perkins
University of California, Los Angeles
Department of Physics and Astronomy

Andre Souza ∗

University of Michigan, Ann Arbor
Department of Mathematics

Mentors: Didier Saumon and Charles Starrett
Los Alamos National Laboratory, XCP-5 †

Contents

1 Introduction 2

2 The Structure Function 2
2.1 Elastic Feature . 3
2.2 Free-electron Feature . 3
2.3 Beyond the RPA . 5
2.4 Bound-free Feature . 6

3 Results 8
3.1 Theoretical Spectra and Convolution . 8
3.2 Comparison to Literature . 10

3.2.1 Free-electron Feature . 10
3.2.2 Bound-free Feature . 10

3.3 Parameter Dependence . 12
3.3.1 Angles . 14
3.3.2 Temperatures . 14

4 Conclusion 14

A Free-electron Feature Details 17
A.1 RPA Mathematics . 17
A.2 RPA Computation . 20
A.3 RPA Removable Discontinuity . 21
A.4 Beyond RPA Mathematics . 22
A.5 Beyond RPA Computation . 23

B Computation of the Bound-free Structure Function 24

C Parameter Dependence Case Details 25

∗Partially supported by the Emeritus Professor Maxwell Reade Fund.
†Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security

Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396

1

Los Alamos Warm Dense Matter Summer Workshop

1 Introduction

Warm dense matter (WDM) is sometimes described as a “solid density plasma” where neither weakly
coupled plasma theory nor condensed matter theory are applicable. More specifically, WDM has
densities of ∼ 0.1− 50 times solid density, temperatures of ∼ 1− 100 eV, is partially ionized, globally
neutral, has strongly correlated particles (due to interactions), and partial electron degeneracy. In
nature, WDM may be found in the interiors of planets such as Jupiter or in the envelopes of white
dwarf stars, and in man-made processes such as inertial confinement fusion (ICF), WDM exists as a
transient state of matter. To model these physical systems, the equation of state as well as opacity,
conductivity, and diffusion coefficients must be known.

Experimentally WDM is probed with an experimental technique known as X-Ray Thomson Scat-
tering (XRTS). In such an experiment X-rays photons are scattered off of WDM and the resulting
photons are measured at a given solid angle. The resulting spectrum gives information on the density
and temperature of WDM, but a model of WDM and the scattering experiment is often required to
interpret the results. As a result, these experiments also serve as a method of validation for potential
models of WDM.

The work presented here focuses on the model of WDM proposed by Starrett and Saumon [1] and
a model for scattering based off of Chihara’s work [2]. The model proposed by Starrett and Saumon
is an average-atom model that is coupled with a two component plasma model, hereafter referred to
as an AA+TCP model. The AA+TCP model is an ab initio model with no free parameters, only re-
quiring knowledge of the element under investigation, the density, and the temperature. The outputs
from the model completely determine all the input parameters needed for Chihara’s structure function
(chemical potential, elastic feature, screening potential, bound-state wavefunctions, and free wavefunc-
tions), which in turn determines the double differential scattering cross-section of the experiment. This
approach to determining the outcome of an XRTS experiment parallels that of Johnson, et al. [3], but
expands the work in many respects. For example, the AA+TCP model completely determines all the
input parameters to the structure function; hence no ad hoc approximations are necessary to close the
system. Also, the free-electron feature and the bound-free feature are modified to include collisions
and occupation of free electron states, respectively.

2 The Structure Function

In order to compare with experiment, knowledge of the double differential cross-section is necessary.
The double differential cross-section is related to the structure function via the following formula

dσ

dω1dΩ
=

(
dσ

dΩ

)
Th

ω1

ω0
S(k, ω), (1)

where dσ
dω1dΩ is the double differential cross-section,

(
dσ
dΩ

)
Th

is the classical Thomson scattering cross-
section, ω0 is the incoming photon energy, ω1 is the outgoing photon energy, ω = ω0 − ω1, k is the
change in photon wavenumber given by the formula k = 2k0 sin(θ/2) where k0 is the initial photon
wavenumber and θ is the scattering angle, and S is the structure function. According to Chihara’s
formula [2] the structure function may be decomposed into three terms:

S(k, ω) = Sii(k, ω)︸ ︷︷ ︸
Elastic Feature

+ See(k, ω)︸ ︷︷ ︸
Free-electron Feature

+ Sb(k, ω)︸ ︷︷ ︸
Bound-free Feature

. (2)

The elastic feature (also called ion-ion feature) represents scattering off of electrons that follow the
ion motion, the free-electron feature (also called electron-electron feature) represents scattering off of
free electrons, and the bound-free feature arises as photons ionize electron to a free state during the
scattering process. In the sections that follow, detailed explanations of each are given.

2

Los Alamos Warm Dense Matter Summer Workshop

2.1 Elastic Feature

The elastic scattering structure function Sii(k, ω) results from photons scattering elastically off of
electrons that follow ion motion within the plasma. This includes both bound electrons and screening
electrons. The term takes the following form [3]:

Sii(k, ω) = |f(k) + q(k)|2 Sii(k)δ(ω). (3)

Here, f(k) and q(k) are the Fourier transforms of the bound and screening electron densities, respec-
tively, due to a single ion. The function Sii(k) is the static structure factor, which describes the spatial
structure of ions in the matter. The term δ(ω) is the Dirac delta function, centered at ω = 0, an
approximation reflecting the fact that photon energy is unchanged in an elastic scattering event.

In practice, Sii(k, ω) is very straightforward to compute. As is clear from Eq. (3), it simply consists
of computing the k-dependent part of the elastic feature G(k) = |f(k) + q(k)|2 Sii(k) for a fixed k. The
AA+TCP code computes f(k), q(k), and Sii(k) on a substantial range of values for k. Given them, it
is a trivial matter to compute G(k) on the same k array. An example of Sii(k), along with the resultant
function G(k), is plotted in Fig. 1. The peak in G(k) corresponds with the peak in Sii(k) and falls off
at large k with the electron density terms as Sii(k) ≈ 1. With G(k) computed on the k grid given by
the AA+TCP code, the value of G(k) is easily found for any fixed k by cubic spline interpolation.

Of course, the delta function is only an approximation and the actual feature has some nonzero
extent in frequency space. In fact, the elastic scattering feature width due to doppler shifts resulting
from thermal ion motion is approximated by

∆ω = ω0

√
(2 ln 2)kBT/Mc2,

where kB is the Boltzmann constant, T is the temperature, M is the ion mass, and c is the speed of light.
In typical WDM applications this width is on the order of 10−1 eV. This is minuscule compared with
all other features in the structure function as well as with the resolving power of current experimental
apparatus. It is thus safe to approximate the feature as a delta function.

2.2 Free-electron Feature

The formula for the free-electron feature (in atomic units) is given by [3]

S0
ee(k, ω) = − 1

1− exp(−ω/kBT)

k2

4π2ne
Im

[
1

ε(k, ω)

]
, (4)

where ω = ω0−ω1 is the change in photon energy, kBT is the electron temperature in units of energy, k
is the change in photon momentum, ne is the number density of electrons, and ε(k, ω) is the dielectric
function. S0

ee is related to See by See(k, ω) = ZfS
0
ee(k, ω) where Zf is the number of free electrons per

ion. It should be noted that the AA+TCP model has two different Zf that may be used, one associated
with AA and another associated with TCP. For this work, the AA Zf was used for all results.

In order to calculate the free-electron feature, an approximation to the dielectric function known
as the random phase approximation (RPA) is used. The RPA dielectric function may be calculated
via the following formula [3]

ε(k, ω) = 1 +
4

πk2

∫ ∞
0
F(p2/2;µe, kBT)p2

(∫ 1

−1

[
1

k2 − 2pkµ+ 2ω + iν
+

1

k2 − 2pkµ− 2ω − iν

]
dµ

)
dp

(5)

F(p2/2;µe, kBT) =
1

1 + exp[(p2/2− µe)/kBT]
. (6)

3

Los Alamos Warm Dense Matter Summer Workshop

Figure 1: The static structure factor Sii(k) and the k-dependent part of the elastic feature G(k) =
|f(k) + q(k)|2 Sii(k) for aluminum at kBT = 1 eV and solid density.

0 2 4 6 8
0

20

40

60

80

100

120

k (a.u.)

G
(k

)
(a

.u
.)

G(k)
S

ii
(k)×50

The semicolon notation is a way of showcasing a parameter dependence. Note that F is a Fermi
occupation factor, µe is the chemical potential, and ν is a quantity that will eventually be taken to
zero1. The details on how to compute the RPA structure function from Eq. (5) are given in §A. Note
that there is a removable discontinuity at ω = 0. This scenario is handled for the RPA case in §A.3.

In Fig. 2 an example of a typical free-electron feature is shown. The two figures are manifestations
of two broad See regimes: the left is in the collective regime while the figure on the right is in the
non-collective regime. The collective regime probes bulk plasma properties while the non-collective
regime probes individual atoms. A simple number known as the dimensionless scattering parameter
(usually denoted by the symbol α) may be attached to these scenarios. It is defined by the formula (in
atomic units) [5],

α ≡ ks
k
, (7)

where

ks =

√
kBT

4πne

F1/2(µe/kBT)

F−1/2(µe/kBT)

is the electron screening wavenumber,

Fν(y) =
1

Γ(ν + 1)

∫ ∞
0

xν

exp(x− y) + 1
dx,

is the complete Fermi-Dirac integral, and Γ is the gamma function. The dimensionless scattering
parameter is a measure of the WDM regime being probed. If α > 1, then See is in the collective regime
and if α < 1 then See is in the non-collective regime.

1This represents a “collisionless” approximation and is the essence of the RPA approximation

4

Los Alamos Warm Dense Matter Summer Workshop

Figure 2: The free-electron feature for beryllium at 20 eV and solid density for an initial photon energy
of ω0 = 2960 eV at scattering angles of 20◦ (left) and 130◦ (right). The parameter α for 20◦ is α = 2.480
and for 130◦, α = 0.475.

As a consequence of the detailed balance relation [3], which is given by

S(k, ω) = eω/kBTS(k,−ω),

the ratio of the peak heights provides a way of measuring the temperature in warm dense plasma. The
peaks are called plasmon resonances.

2.3 Beyond the RPA

As mentioned previously, the RPA does not take into account collisions in WDM. From now on, the
RPA dielectric function will be denoted by εRPA. A way to extend the dielectric function to include
more physics is with the extended Mermin ansatz [5] which results in the formula:

εM (k, ω) = 1 +
[1 + iν(ω)/ω][εRPA(k, ω + iν(ω))− 1]

1 + i[ν(ω)/ω][εRPA(k, ω + iν(ω)− 1]/[εRPA(k, 0)− 1]
.

The introduction of the complex frequency ω+ iν accounts for damping by collisions. Furthermore the
dynamic collision frequency ν must be approximated. With the Born approximation [5] νB (in atomic
units) is given by

νB(ω) = −i Ω2
0

24π3Zf

∫ ∞
0

k6[V S
ei (k)]2Sii(k)

1

ω

[
εRPA
e (k, ω)− εRPA

e (k, 0)
]
dk,

where Ω0 is a normalization volume, V S
ei is the potential from the AA+TCP model, and Sii is the

ion-ion structure function (elastic feature). The superscript B on the collision frequency denotes the
fact that it comes from the Born approximation. It is difficult to find any information on what and
where the quantity Ω0 comes from. Since integral formulas are used for quantities in this work (as
opposed to summations), it seems to be the case that Ω0 = 1. This will henceforth be assumed.

In Fig. 3 an example of a typical free-electron feature is shown. The details on how to compute the
beyond RPA structure function are given in the appendix. The figure on the left is in the collective
regime while the figure on the right is in the non-collective regime. One can see the effect that the

5

Los Alamos Warm Dense Matter Summer Workshop

Figure 3: The free-electron feature for beryllium at 20 eV and solid density for an initial photon energy
of ω0 = 2960 eV at scattering angles of 20◦ (left) and 130◦ (right). The red dashed line is the RPA
free-electron structure function while the green dashed line is free-electron structure function computed
with the Born-Mermin ansatz.

dynamic collision frequency has on the free-electron structure function. In the collective regime the
structure function gets damped and shifted outwards while in the non-collective regime there is not
much change. These two scenarios are typical for the free-electron feature. Sometimes in the non-
collective regime things get shifted to the left or right and damped more than what is shown in the
figure, but in general the structure function resembles the RPA free-electron feature. The astute reader
may notice a bump at ω = 0 in both the collective and non-collective regimes. This seems to be a
consequence of the model and not a numerical resolution error.

2.4 Bound-free Feature

The bound-free feature Sb(k, ω) arises as X-ray photons ionize a bound electron to a free state during
the scattering process. By conservation of energy Sb(k, ω) is nonzero for energy transfers from the
photon sufficiently large to ionize the electron.

The formula for the bound-free structure function in atomic units is (see [3])

Sb(k, ω) =
1

8π3

∑
n`m

on`
2`+ 1

∫
p
∣∣∣〈ψp| eik·r |ψn`m〉∣∣∣2 dΩp, (8)

where n, `, and m are the electron bound state quantum numbers, p is the magnitude of the momentum
of the final electron state, ψp is the final (free) electron wavefunction, ψn`m is the initial (bound)
electron wavefunction, eik·r is the final photon state, and the differential dΩp implies integration over
all angles of the final electron momentum. The occupation number on` is the average number of
electrons occupying the n` bound state, and is given by

on` = 2(2`+ 1)F(εn`),

where F(εn`) is the Fermi occupation factor defined in Eq. (6) (the other arguments in Eq. (6), being
material and state properties, are implied hereafter). The energy εn` is the initial bound electron
energy, which is independent of m. The final electron state will have energy

εp = ω + εn`,

6

Los Alamos Warm Dense Matter Summer Workshop

and the magnitude of the final momentum is

p =
√

2εp.

According to Johnson, et al. [3], when assuming average-atom final electron states the formula in
Eq. (8) can be reduced to the much more computationally tractable formula

Sb(k, ω) =
∑
n`

2p

π
on`
∑
`1`2

A`1``2 |I`1``2 (p, k)|2 . (9)

In Eq. (9), `1 is the orbital angular momentum quantum number of the final electron state and `2 is
the orbital angular momentum of the final photon state. The factor A`1``2 is given by

A`1``2 = (2`1 + 1)(2`2 + 1)

(
`1 ` `2
0 0 0

)2

, (10)

where

(
`1 ` `2
0 0 0

)
is the Wigner 3-J symbol that arises from integration over the spherical harmonics

that form the angular portion of the wavefunctions in the matrix element in Eq. (8). The function
I`1``2 (p, k) is given by

I`1``2 (p, k) =
1

p
eiδ`1 (p)

∫ ∞
0

Pε`1(r)j`2(kr)Pn`(r)dr, (11)

where the P functions are the radial portions of the corresponding electron wavefunctions, scaled by r
for ease of spherical integration (i.e. Pn`(r) = rψn`(r), where ψn`(r) is the radial portion of ψn`m(r)),
the subscript ε`1 refers to the free state with energy εp and orbital angular momentum quantum number
`1, and j`2 is the spherical Bessel function indexed by `2 and represents the radial part of the photon
final state. The value of δ`1(p), the phase of the final electron state, is inconsequential because only
the norm of I`1``2 (p, k) is used in the computation of Sb(k, ω).

Some corrections to Eqs. (9) and (11) are necessary. First, while Eq. (9) accounts for the occupation
of initial (bound) electron states through the occupation number on`, it fails to fully consider the
occupation factor of free-electron states. This is given by F(εp) according to Eq. (6). Since a bound
electron can only be ionized to a previously unoccupied free state, Eq. (9) must be corrected by a factor
of 1−F(εp) to reflect the likelihood that the final state to which the electron is ionized is unoccupied.

The other necessary corrections consider weakly bound states. The AA+TCP model that supplies
the wavefunctions used in Eq. (9) includes corrections to weakly bound states to ensure a smooth
transition of bound states into the continuum and to truncate the weakly bound wavefunctions[1].
There are two specific corrections: the first is a cutting function fcut(r) that multiplies the square of
the bound state wavefunction and the second is a weighting factor M(εn`). Details on the specific
formulation of these corrections can be found in [1].

With these corrections, Eqs. (9) and (11) become

Sb(k, ω) =
∑
n`

2p

π
on`F(εn`)M(εn`)

∑
`1`2

A`1``2 |I`1``2 (p, k)|2 (12)

I`1``2 (p, k) =
1

p
eiδ`1 (p)

∫ ∞
0

Pε`1(r)j`2(kr)Pn`(r)
√
fcut(r)dr. (13)

Details on the computational implementation of these formulas can be found in Appendix B. Briefly,
the computational method is a convergence test that consists of computing Eq. (12) using Eqs. (10)
and (13) up to a maximum value of `1 and `2 and repeating the computation for successively larger
maximum values of `1 and `2 until successive results differ by a negligible amount.

7

Los Alamos Warm Dense Matter Summer Workshop

Figure 4: The bound-free feature for chromium at kBT = 5 eV, density ρ = 7.19 g/cm3, an initial
photon energy of 4750 eV, and scattering angle θ = 40 degrees. The large narrow feature is a result of
electrons ionized from the 3p state, while the smaller bump results from the 3s state.

0 50 100
0

1

2

3

S
b (

a.
u.

)

ω (eV)

An example of a bound-free structure function Sb is pictured in Fig.4 as a function of ω for a fixed k.
This example is of chromium at temperature T = 5 eV, solid density (ρ = 7.19 g/cm3), with incident
X-ray photon energy ω0 = 4750 eV, and at a scattering angle of θ = 40◦. The structure function is
zero up to a point, here around ω = 30 eV, reflecting the fact that Sb is zero where ω is too small an
energy transfer to ionize any bound electrons. Multiple peaks occur in the figure; these correspond
with different bound states. The largest peak is results from electrons ionized from the 3p state, which
is the most weakly bound state in chromium at this density and temperature and has an ionization
energy of 28.9 eV. The smaller peak corresponds with the 3s state, whose ionization energy is 55.9 eV.
This is characteristic of bound-free structure functions; the most prominent peak tends to arise from
the most weakly bound electrons. Of course, there are plenty of other occupied bound electron states
that contribute to Sb in this chromium case; however, these have such large ionization energies that
they are far from the ω range pictured in the figure (the smallest is around 500 eV).

3 Results

In this section the theoretical spectra for various cases are computed. In §3.2.2 the free-electron
feature is computed with the RPA; in all other cases the free-electron feature is computed with the
Born-Mermin ansatz. A description of the process of preparing the theoretical structure function with
experiment is given in §3.1, including a discussion of convolution of the theoretical scattering spectrum
with a source spectrum. A limited verification study is presented in §3.2 comparing calculations
described in this document to several published results. A preliminary exploration of parameter space
is presented in §3.3, in which dependence of the structure function on temperature and scattering angle
is explored.

3.1 Theoretical Spectra and Convolution

In §2 the structure function is presented and each of its constituent parts are explained in detail. The
total structure function is, according to Eq. (2), the sum of the elastic, free electron, and bound-free
terms. While useful for theoretical purposes, however, the total structure function alone is not sufficient

8

Los Alamos Warm Dense Matter Summer Workshop

Figure 5: The theoretical spectrum for aluminum at a density of ρ = 2.7 g/cm3 and kBT = 50 eV
for an initial photon energy of 2960 eV and a scattering angle of θ = 130◦. The unconvolved spectra
is on the left and the convolved spectra is on the right. A 5 eV Gaussian was used for the convolution
and Sii makes its appearance as a bump in the figure on the right, whereas originally it was a delta
function centered at 2960 eV and absent from the figure on the left. The height of the total structure
function at 2960 eV is ∼ 245 atomic units.

2800 2900 3000
0

0.5

1

1.5

ω
1
 (eV)

S
 (

a.
u.

)

S

tot

S
ee

S
bf

2800 2900 3000
0

0.5

1

1.5

ω
1
 (eV)

S

tot

S
ee

S
bf

S
ii

to produce an XRTS profile comparable to experiment. As is seen in Eq. (1), the structure function
must be scaled by prefactors.

However, a more pressing concern is that any experimental incident X-ray source is distributed
over a range of photon energies. As such, the spectrum resulting from a single photon energy cannot
be observed experimentally. The most theoretically sound method of dealing with this complication
would be to compute the spectrum for each incident photon energy in the range and then to combine
them as an average weighted by the incident spectrum. However, this would be prohibitively expensive
to compute. A more economical method consists of producing the scattering profile for a single photon
energy (preferably the center of the source spectrum or the energy at the peak of the source spectrum)
and then convolving the profile with the source spectrum. The viability of this approach depends
on the scattering profile varying only minimally as the incident photon energy varies over the source
spectrum range; in all cases observed thus far, this is indeed the case.

An example of a theoretical scattering profile for a single incident photon energy and the resulting
convolved spectrum is pictured in Fig. 5. The profile was convolved with a normalized Gaussian with
full width at half-maximum 5 eV. In simulating an experimental scattering spectrum it is possible to
convolve the theoretical profile with the experimentally measured source spectrum or any reasonable
profile for a source. The effects of convolution are clear; the most narrow features are the most
drastically affected, sometimes washing out almost completely, while broad features remain mostly
untouched. It is important to recognize the appearance of the large feature near ω1 = ω0 after
convolution; this is the elastic scattering feature, which was expressed theoretically as a delta function
(see §2.1) and thus takes on the shape of the source spectrum with which it is convolved. It should
also be noted that the convolved profile in Fig. 5 is also scaled with the prefactors shown in Eq. (1).
In this way the resultant scattering spectrum is ready for comparison with experimental data.

9

Los Alamos Warm Dense Matter Summer Workshop

Panel ne (cm−3) kBT (eV) ω0 or λ0 θ (degrees) µe (a.u.) Zf

Top Left 7.5× 1023 12 6180 (eV) 25 0.930851 2

Top Right (Black) 1.0× 1019 200 532 (nm) 60 -105.475 2

Top Right (Red) 1.0× 1019 600 532 (nm) 60 -352.76 2

Top Right (Blue) 1.0× 1019 3000 532 (nm) 60 -2029.96 2

Bottom Left (Black) 1.0× 1021 0.5 4.13 (nm) 60 -0.0109079 2

Bottom Left (Red) 1.0× 1021 2 4.13 (nm) 60 -0.207043 2

Bottom Left (Blue) 1.0× 1021 8 4.13 (nm) 60 -1.44484 2

Bottom Right (Black) 1.0× 1023 0.8 0.26 (nm) 60 0.2862 2

Bottom Right (Red) 1.0× 1023 3 0.26 (nm) 60 0.247005 2

Bottom Right (Blue) 1.0× 1023 13 0.26 (nm) 60 -0.437541 2

Table 1: The parameters for the Fig. 6.

3.2 Comparison to Literature

One of the methods that was used to verify that calculations were being performed correctly was
comparison with the existing literature where possible. Since the formulas used in this work are
modifications of existing formulas and use WDM data given by the model of Starrett and Saumon
[1] for the first time, perfect agreement is not expected in all cases. In this section a few of these
comparisons are presented, including discussions of discrepancies where the models fail to agree. The
primary sources of data with which to compare are [3], [4], and [5].

3.2.1 Free-electron Feature

Comparisons were made to Glenzer and Redmer2 [5] to check that the results where being computed
correctly for See. In some cases there were noticeable differences between the computed values and
what is shown in the article, but this may arise from poorly specified computational parameters in
the published calculation. Increasing the number of grid points used for integration of the dynamic
collision frequency and the RPA dielectric function did not change the computed results enough to
account for the discrepancy. Thus it is unlikely that the difference is due to numerical inaccuracies in
the calculation. In Table 1 the parameters for Fig. 6 are summarized. The parameter λ0 is the initial
photon wavelength. Compare Fig. 6 with figures 8 and 9 of [5]. Note that in atomic units the plasma
frequency ωpl is ωpl =

√
4πne. The discrepancy between figure 9 of [5] and the bottom left figure in

Fig. 6 may come about due to the choice of Zf = 2, while in [5] the value of this important parameter
is not given.

3.2.2 Bound-free Feature

Johnson, Nilsen, and Cheng explore the bound-free feature for several cases in [3] and [4]. In Fig. 7
the bound-free feature computed as described in this report is shown for beryllium at T = 20 eV,
ρ = 1.85 g/cm3, ω0 = 2960 eV and two scattering angles: 30◦ and 150◦. The single feature apparent
in the profiles arises from the 1s state, the only bound electron state present for beryllium at the
given temperature and density. This is an analogous figure to that presented in Fig. 5 of [3]. Some
similarities are apparent: the general structure of the functions appears the same in each figure, as do
the location of peaks and the fact that the peak height increases by about a factor of 10 from the 30◦

case to the 150◦ case. The most marked difference between Fig. 5 of [3] and Fig. 7 is that the peaks in

2Note that there is a typo in the formula for the Debye expression in [5]. The correct formula (in atomic units) is
κ2
i = Z2

fni4π/kBT .

10

Los Alamos Warm Dense Matter Summer Workshop

Figure 6: The free-electron feature S(k, ω) for various cases. In all cases the dashed line corresponds to
the RPA structure function and the solid lines are the structure function computed with the extended
Mermin Ansatz using the TCS model as described in [5]. The parameters used to make each figure
are summarized in Table 1. These plots can be directly compared to figures 8 and 9 of [5].

-80 -60 -40 -20 00.00

0.01

0.02

0.03

0.04

0.05

w @eVD

S e
eHk,
w
L@eV

D

ne = 7.5x1023

-5 0 50

5

10

15

20

25

30

wêwpl

S e
eHk,w

L@R
yd
-
1 D

ne = 1.0x1019

-5 0 50.0

0.5

1.0

1.5

2.0

2.5

3.0

wêwpl

S e
eHk,w

L@R
yd
-
1 D

ne = 1.0x1021

-5 0 50.0

0.1

0.2

0.3

0.4

wêwpl

S e
eHk,w

L@R
yd
-
1 D

ne = 1.0x1023

11

Los Alamos Warm Dense Matter Summer Workshop

Figure 7: The bound-free feature for beryllium at kBT = 20 eV, density ρ = 1.85 g/cm3, and an initial
photon energy of 2960 eV. The figure on the left is for a scattering angle of θ = 30◦ and the figure on
the right is for θ = 150◦. In both cases the feature arises from the 1s bound state. Compare to figure
5 of [3].

0 200 400
0

0.002

0.004

0.006

0.008

0.01

ω (eV)

S
b (

a.
u.

)

0 200 400
0

0.02

0.04

0.06

0.08

ω (eV)

30o 150o

Fig. 7 are slightly smaller. Though it is not completely certain, this may be explained by the inclusion
of the factor 1−F(εp) in Eq. (12). This factor is a correction to the model used in [3] and can reduce
the low-energy (that is, low-ω) end of the structure function in such a way to lower peaks as seen in
this case.

In fact, in the other case considered in this section, a similar discrepancy is even more apparent.
Fig. 8 shows the same chromium case shown in §2.4. Note that the case is now plotted against
−ω = ω1 − ω0 for ease of comparison with the same case in Fig. 2 of [4]. The left side shows the
bound-free feature Sb alone, while the right side shows Sb, the free-electron feature See, and the total
structure function S plotted together. The plots are convolved in this case with a normalized Gaussian
of full-width at half-maximum 5 eV as described in §3.1; hence the elastic scattering profile is visible
as a substantial spike in the structure function at ω1 = ω0. In comparing with Fig. 2 of [4], the
bound-free feature in Fig. 8 is around a factor of 2 smaller. It is likely that the 1 − F(εp) factor
previously mentioned is to blame for this difference as well.

These examples, and in particular the second, highlight a valuable opportunity for validation of
the model against experiment. The drastic change in proportion of the bound-free feature between the
two models may be useful in identifying strengths or opportunities for improvement of this model.

3.3 Parameter Dependence

In this section the sensitivity of the total structure function to scattering angle and temperature is
explored. The unconvolved bound-free and free-electron structure functions are shown here. Since the
elastic scattering feature is approximated as a delta function, it can not be effectively plotted together
with the bound-free and free-electron features. The values of G(k), the scaling term on the elastic
feature delta function as defined in §2.1, are listed in Appendix C for each of the cases that follow,
as are various other details of the cases. In all cases the Born-Mermin dielectric function is used to
compute the free-electron feature.

12

Los Alamos Warm Dense Matter Summer Workshop

Figure 8: The bound-free feature and convolved theoretical spectra for chromium at kBT = 5 eV,
density ρ = 7.19 g/cm3, an initial photon energy of 4750 eV, and scattering angle θ = 40◦. The figure
on the left shows the bound-free feature only and the figure on the right is the convolved theoretical
spectra, including all the contributions. The peak height is ∼ 525 atomic units. This is the same case
as in Fig. 4. Compare to figure 2 of [4].

−100 −50 0
0

0.5

1

1.5

2

S
b (

a.
u.

)

ω
1
−ω

0
 (eV)

−150−100 −50 0 50
0

0.5

1

1.5

2

ω
1
−ω

0
 (eV)

S
tot

S
ee

S
bf

13

Los Alamos Warm Dense Matter Summer Workshop

3.3.1 Angles

In Fig. 9 the free-electron and bound-free features are shown together with their sum. Note that
these plots are given for the absolute frequency ω1 and that the incident photon energy in all cases
is ω0 = 2960 eV. For small angles the free-electron feature is in the collective regime and the bound-
free feature is greatly suppressed. As the angles increase the free-electron feature transitions to the
noncollective regime while the bound-free feature grows. Between 120◦ and 140◦ the transition from
collective to noncollective is complete. Note that the coherence parameter α decreases as the angle
increases; this is a manifestation of the transition to the noncollective regime.

One feature that seems to be a consequence of the AA+TCP model is the enhancement of the free-
electron feature as the scattering angle transitions from 20◦ to 40◦. When compared to the free-electron
feature computed with the RPA dielectric function (not shown here) no enhancement was found and
the transition to the non-collective regime happened much quicker and was more drastic. The results
shown in Fig. 9 did not change as the number of grid points used to calculate the free-electron feature
were increased.

The growth of the bound-free feature with angle is typical. The same phenomenon is observed in
Fig. 7 and reflects the fact that electrons that are ionized in the scattering process are more likely to
scatter photons at large angles than otherwise. The dominant feature in Sb at every angle is the most
weakly-bound feature, which is 2p, with ionization energy around 50 eV. Though not easily visible in
Fig. 9, the 2s feature (ionization energy ∼80 eV) also appears and contributes to the overall function.
The 1s binding energy is too large to allow the feature to be visible in the figure.

3.3.2 Temperatures

Two figures for several temperature ranges are shown plotted against ω1 for an incident photon energy
ω0 = 2960 eV. In Fig. 10 the XRTS unconvolved theoretical spectrum is shown for a generic example
at 30◦. As the temperature increases a transition to the collective regime occurs as is characterized
by the values of the dimensionless scattering parameter α. Initially, from 5 eV to 10 eV there is an
enhancement in the free-electron feature while going from 10 eV to 20 eV and 20 eV to 50 eV there
is a suppression. Note that the bound-free feature is multiplied by a scaling factor, hence very small
in this regime, as is normally the case for small scattering angles. In all cases the 2p and 2s features
contribute as in §3.3.1, though with varying ionization energies. Note that at 50 eV the bound-free
feature gains contributions from the extra, very weakly-bound state 3s. This is visible near ω1 = 2960
eV, where a spike is visible in Sb.

In Fig. 11 the XRTS unconvolved theoretical spectrum is in the noncollective regime for all the
temperatures at 130◦. As was the case in the 30◦ case, the spectra becomes “more” non-collective as
the temperature is increased; this trend can be seen by examining the value of α. However, unlike the
previous case, the free-electron feature decreases monotonically in maximum height. With regards to
the bound-free feature, note that it is no longer multiplied by a scaling factor; Sb is much larger in this
regime. As was the case before, at kBT = 50 eV the bound-free feature gains contributions from the
weakly-bound 3s state.

4 Conclusion

Starrett and Saumon’s ab initio model for warm dense matter [1] and Chihara’s structure function
[2] have been used to calculate the theoretical spectra of an XRTS experiment off of WDM. The
work here is the first time an ab initio model has been used to completely determine the theoretical
spectra. To do this computation, the elastic, free electron, and bound-free features had to be computed
using Chihara’s formula, with inputs from Starrett and Saumon’s model. This parallels the work done

14

Los Alamos Warm Dense Matter Summer Workshop

Figure 9: The unconvolved theoretical XRTS spectra for aluminum at a density of ρ = 2.7 g/cm3 and
kBT = 10 eV for an initial photon energy of 2960 eV and several different angles. The dimensionless
scattering parameter α is described in §2.2.

2800 2900 3000
0

2

4

S
 (

a.
u.

)

θ=20o, α=2.723

S

tot

S
ee

S
bf

2800 2900 3000
0

2

4

θ=40o, α=1.383

2800 2900 3000
0

2

4

θ=60o, α=0.946

S
 (

a.
u.

)

2800 2900 3000
0

2

4

θ=80o, α=0.736

2800 2900 3000
0

2

4

θ=100o, α=0.617

S
 (

a.
u.

)

2800 2900 3000
0

2

4

θ=120o, α=0.546

2800 2900 3000
0

2

4

θ=140o, α=0.503

ω
1
 (eV)

S
 (

a.
u.

)

2800 2900 3000
0

2

4

θ=160o, α=0.48

ω
1
 (eV)

15

Los Alamos Warm Dense Matter Summer Workshop

Figure 10: The unconvolved theoretical spectra for aluminum at a density of ρ = 2.7 g/cm3 and several
temperatures for an initial photon energy of 2960 eV and scattering angle θ = 30◦. The elastic feature
is not shown and the dimensionless scattering parameter α is described in §2.2.

2800 2850 2900 2950 3000
0

1

2

3

4
S

 (
a.

u.
)

T=5 eV, α=2.172

S

tot

S
ee

S
bf

×20

2800 2850 2900 2950 3000
0

1

2

3

4

T=10 eV, α=1.827

S

tot

S
ee

S
bf

×20

2800 2850 2900 2950 3000
0

1

2

3

4

ω
1
 (eV)

S
 (

a.
u.

)

T=20 eV, α=1.522

S

tot

S
ee

S
bf

×20

2800 2850 2900 2950 3000
0

1

2

3

4

ω
1
 (eV)

T=50 eV, α=1.278

S

tot

S
ee

S
bf

×2

by Johnson et al. [3], but expands it by including a more realistic elastic feature (using Starrett
and Saumon’s model), goes beyond the RPA approximation for the free-electron feature by using the
extended Mermin ansatz and the Born approximation to the dynamic collision frequency, and modifies
the bound-free feature to include the occupation of the final state. Furthermore, in order to compare
to experiment, it is necessary to convolve the theoretical spectra with an input profile, this has been
implemented.

Comparisons have been made to a small part of the existing literature and a preliminary search
through parameter space has been performed for different scattering angles and temperatures. In the
future, searching through parameter space to find a best fit for given experimental data may provide
additional insight as to material properties of WDM.

The next steps of research would involve a thorough comparison with experimental data, further
exploration of parameter space to include: sensitivity to initial photon energy and momentum, density
of the material, and different materials. Doing such a study will lead to insights as to the validity of
the AA+TCP model and Chihara’s formula.

16

Los Alamos Warm Dense Matter Summer Workshop

Figure 11: The unconvolved theoretical spectra for aluminum at a density of ρ = 2.7 g/cm3 and several
temperatures for an initial photon energy of 2960 eV and scattering angle θ = 130◦. The elastic feature
is not shown and the dimensionless scattering parameter α is described in §2.2.

2700 2800 2900 3000 3100
0

0.5

1

1.5

2

2.5
S

 (
a.

u.
)

T=5 eV, α=0.62

S

tot

S
ee

S
bf

2700 2800 2900 3000 3100
0

0.5

1

1.5

2

2.5
T=10 eV, α=0.522

2700 2800 2900 3000 3100
0

0.5

1

1.5

2

2.5
T=20 eV, α=0.435

ω
1
 (eV)

S
 (

a.
u.

)

2700 2800 2900 3000 3100
0

0.5

1

1.5

2

2.5
T=50 eV, α=0.365

ω
1
 (eV)

A Free-electron Feature Details

A.1 RPA Mathematics

Computing the dielectric function can be done analytically to a certain point. Once a simplified
expression is obtained, it can then be evaluated numerically. To this end, consider the integral∫ 1

−1

[
1

k2 − 2pkµ+ 2ω + iν
+

1

k2 − 2pkµ− 2ω − iν

]
dµ.

For notational convenience define the following quantities (with no relation to previous symbols):
α = 2pk, γ1 = k2 + 2ω, and γ2 = k2 − 2ω. With this simplification in place, one can see that

α

∫ 1

−1

[
1

γ1 − αµ+ iν
+

1

γ2 − αµ− iν

]
dµ = − log(γ1 − αµ+ iν)|1−1 − log(γ2 − αµ− iν)|1−1

= log(γ1 + α+ iν)− log(γ1 − α+ iν)

+ log(γ2 + α− iν)− log(γ2 + α− iν).

At this point some care must be taken3. Since log(z) = log(x + iy) = log(
√
x2 + y2) + i arctan(y, x),

the real part of logarithm becomes

log

(√
(γ1 + α)2 + ν2

(γ1 − α)2 + ν2

)
+ log

(√
(γ2 + α)2 + ν2

(γ2 − α)2 + ν2

)
limν→0= log

∣∣∣∣k2 + 2ω + 2pk

k2 + 2ω − 2pk

∣∣∣∣+ log

∣∣∣∣k2 − 2ω + 2pk

k2 − 2ω − 2pk

∣∣∣∣ .
3In what follows the quantity arctan(y, x) is the two argument arctangent function. This quantity takes into account

what quadrant a point is located in before returning the angle. For example, arctan(−1, 1) = −π/4 and arctan(1,−1) =
3π/4.

17

Los Alamos Warm Dense Matter Summer Workshop

case arctan 1 arctan 2 arctan 3 arctan 4 angle

1 + + + + 0 + 0 + 0 + 0 = 0

2 + + + - 0 + 0 + 0 + π = π

3 + + - + 0 + 0− π + 0 = −π
4 + + - - 0 + 0− π + π = 0

5 + - + + 0− π + 0 + 0 = −π
6 + - + - 0− π + 0 + π = 0

7 + - - + 0− π − π + 0 = −2π

8 + - - - 0− π − π + π = −π
9 - + + + π + 0 + 0 + 0 = π

10 - + + - π + 0 + 0 + π = 2π

11 - + - + π + 0− π + 0 = 0

12 - + - - π + 0− π + π = π

13 - - + + π − π + 0 + 0 = 0

14 - - + - π − π + 0 + π = π

15 - - - + π − π − π + 0 = −π
16 - - - - π − π − π + π = 0

Table 2: All the cases. The + symbol signifies a positive second argument and the − symbol signifies
a negative second argument.

(The logarithms are in base e.) Note that this function has four singularities located at the points

p =
−k2 − 2ω

2k
, p =

k2 + 2ω

2k
,

p =
−k2 + 2ω

2k
, and p =

k2 + 2ω

2k
.

But since the integration is carried over positive values of p, there are only two singularities that are
of concern in the integration, namely,

s1 =

∣∣∣∣2|ω| − k2

2k

∣∣∣∣ ,
s2 =

2|ω|+ k2

2k
.

Numerically handling the singularities will be the subject of §A.2.
The imaginary part of the logarithm requires careful examination. It is given by the formula

ϕ(p; k, ω, ν) = arctan(ν, γ1 + α)− arctan(ν, γ1 − α) + arctan(−ν, γ2 + α)− arctan(−ν, γ2 − α).

In the limit that ν → 0+ the output of the function is either 0 or ±π or ±π/2., assuming the principal
branch of the logarithm is being used. At first glance determining the outcome involves checking
34 = 81 cases depending on whether or not the second argument in each of the four arctangents
are positive, negative, or zero. However, the quantity comes up in an integration over p (which is
proportional to α), hence the places where the second argument equals zero are inconsequential. Thus,
there are only 24 = 16 cases to consider depending on the signs of the denominators. In Table 2, all
the possibilities are listed for convenience.

In order to determine the value of ϕ, it is easiest to look for when the second argument changes

18

Los Alamos Warm Dense Matter Summer Workshop

signs. This is exactly the same points as the singularities in the real part, namely,

s1 =

∣∣∣∣2|ω| − k2

2k

∣∣∣∣
s2 =

2|ω|+ k2

2k

However, it is necessary to determine which arctangent is undergoes sign flipping. To analyze this
situation, the case where ω > 0 will be considered and all the possibilities associated with this case
will be exhausted. There are three p ranges to examine, either p < s1, s1 < p < s2 or s2 < p. Once
the various cases are determined for ω > 0, the cases where ω < 0 are discussed.

Suppose p < s1 meaning α < |γ2|. Since ω > 0, it is possible to conclude that γ1 > γ2, γ1 > 0.
Now it is necessary to consider possible values for γ2. First consider the case where γ2 is positive. This
means that γ2 − α > 0 and γ2 + α > 0 which in turn implies that γ1 − α > 0 (remember γ1 is larger
than γ2). Hence all of the denominators are positive which means that it is case 1 of the table. Hence
the value is zero. Now assume that γ2 is negative. Then α < −γ2 which implies that α+ γ2 < 0. The
sign on α+ γ1 is still positive. Since α and −γ2 are positive, it is possible to conclude that α− γ2 > 0
meaning γ2 − α < 0. For γ1 − α, note that α < |γ2| < γ1, meaning γ1 − α is also positive. Thus the
third denominator is negative, the first is positive, the fourth is negative, and the second is positive.
This is case number 4. In total we can conclude, for ω > 0 and p < s1 the sum of the arctangents is
zero.

Now consider the regime where s1 < p < s2. Since ω > 0 the quantity s2 = γ1/2k is always positive
and hence γ1 ± α > 0. Again there are two cases to consider, depending on the sign of γ1. Assume
that γ1 is positive, then γ1 − α < 0 and γ1 + α > 0. The first and second denominator are positive,
the third is positive, and the last is negative. This is case 2. If γ1 is negative (meaning s1 is negative)
then the first two remain positive while −γ1 < α which means α + γ1 > 0 and γ1 − α < 0. Hence,
regardless of the sign on γ1, the result is case 2.

For the last regime s2 < α observe that the sign in the denominator is the sign of α hence and case
6.

Thus for ω > 0, in the limit as ν → 0, the formula for ϕ, which was originally

ϕ(p; k, ω, ν) = arctan(ν, γ1 + α)− arctan(ν, γ1 − α) + arctan(−ν, γ2 + α)− arctan(−ν, γ2 − α),

becomes

ϕ(p; k, ω, 0+) =


0 for p < |2ω − k2|/2k
π for |2ω − k2|/2k < p < (2ω + k2)/2k

0 for (2ω + k2)/2k < p

.

To handle the ω < 0 it is possible to take advantage of the symmetry ϕ(p; k, ω, ν) = −ϕ(p; k,−ω, ν).
This leads to the following formula for ϕ,

ϕ(p; k, ω, 0+) =


0 for p < |2|ω| − k2|/2k
πsgn(ω) for |2|ω| − k2|/2k < p < (2|ω|+ k2)/2k

0 for (2|ω|+ k2)/2k < p

.

With this simplified formula it is possible to carry out the integration for the imaginary part of the

19

Los Alamos Warm Dense Matter Summer Workshop

dielectric function. For illustrative purposes, assume that ω > 0. The integral is given by

Im[ε(k, ω)] =
2

πk3

∫ ∞
0
F(p2/;µe, kBT)pϕ(p)dp

=
2

k3

∫ s2

s1

F(p2/2;µe, kBT)pdp

=
2kBT

k3
log(1 + e(µe−p2/2)/kBT)|s2s1

=
2kBT

k3
ln

[
1 + exp[(µe − s2

2/2)/kBT]

1 + exp[(µe − s2
1/2)/kBT]

]
The total formula (valid for all ω) for the imaginary part of the dielectric function is

Im[ε(k, ω)] =
2kBT

k3
ln

[
1 + exp[(µe − a(k, ω)2/2)/kBT]

1 + exp[(µe − b(k, ω)2/2)/kBT]

]
,

where

a(k, ω) = |2ω − k2|/2k,
b(k, ω) = (2ω + k2)/2k.

A.2 RPA Computation

Although it was possible to compute the imaginary part of the dielectric function analytically, this is
not the case for the real part. In this section a numerical method to handle the singularities discussed
in §A.1 will be shown.

The integrand g in the real part of the dielectric function is a function of p with parameter depen-
dence on k, ω, µe, and kBT is given by

g(p; k, ω, µe, kBT) = F(p2/2;µe, kBT)p

[
ln

∣∣∣∣k2 + 2pk + 2ω

k2 − 2pk + 2ω

∣∣∣∣+ ln

∣∣∣∣k2 + 2pk − 2ω

k2 − 2pk − 2ω

∣∣∣∣] .
The value of the function g will be abbreviated by g(p). As mentioned previously there are (generally)
two singularities in the integrand that may be of concern

s1 =

∣∣∣∣2|ω| − k2

2k

∣∣∣∣ ,
s2 =

2|ω|+ k2

2k
.

The first singularity is always less than the second by the triangle inequality. The following integration
scheme is used: The integral is divided into 4 regions, the integral from p = 0 to the first singularity,
the first singularity to the second singularity, the second to twice the second, and twice the second to
infinity: ∫ ∞

0
g(p) =

∫ s1

0
g(p) +

∫ s2

s1

g(p) +

∫ 2s2

s2

g(p) +

∫ ∞
2s2

g(p).

Numerically, there will be issues if s1 ≈ 0 or s1 ≈ s2. This case is handled by setting value of the

20

Los Alamos Warm Dense Matter Summer Workshop

integral over [0, s1) or (s1, s2) to zero4. Now in each region the following change of variables is used:

p = s1 tanh(u) for p ∈ [0, s1)

p =
(s2 − s1)

2
tanh(u) +

s2 + s1

2
for p ∈ (s1, s2)

p =
s2

2
tanh(u) + 3/2s2 for p ∈ (s2, 2s2]

p = u for p ∈ [2s2,∞)

The first three mappings effectively place the singularities at infinity (or perhaps one may view it as
clustering infinitely many points close to the singularity). This results in the following representation
of the integral∫ ∞

0
g(p) =

∫ ∞
0

g(s1 tanh(u))[s1sech2(u)]du

+

∫ ∞
−∞

g

(
(s2 − s1)

2
tanh(u) +

s2 + s1

2

)[
(s2 − s1)

2
sech2(u)

]
du

+

∫ ∞
−∞

g
(s2

2
tanh(u) + 3/2s2

) [s2

2
sech2(u)

]
du

+

∫ ∞
2s2

g(u)du

The first three integrals are handled by using the trapezium rule while the last integral is evaluated
using a Gauss-Laguerre integration scheme. Because of the hyperbolic secant factor in the first three
integrals, it is only necessary to go to |u| ≈ 15 before the integrand is extremely small5. Furthermore,
tanh(15)− 1 ≈ 10−13 which is close to machine precision for double precision arithmetic. This means
that going any farther than |u| = 15 would be effectively the same as evaluating the function at the
singularity. However, it is often the case (for numerical stability reasons) that a lower value for |u|
must be chosen, for example |u| ≈ 10 or 12.

A.3 RPA Removable Discontinuity

As mentioned previously, in Eq. 4 there is a removable discontinuity at ω = 0. To see how the
cancellations play out, a few Taylor expansions about ω = 0 need to be performed. Observe that

1

1− exp(−ω/kBT)
≈ kBT

ω
.

For notational convenience, define two new parameters α and β with kBTα = µe− (2ω−k2)2/8k2 and
kBTβ = µe − (2ω + k2)2/8k2 (note that α ≈ β since ω ≈ 0). The following calculation

k3

2kBT
Im[ε(k, ω)] = ln

[
1 + exp[α]

1 + exp[β]

]
≈ −1 +

1 + exp[α]

1 + exp[β]
=

exp[α]− exp[β]

1 + exp[β]

=
exp[β](exp[α− β]− 1)

1 + exp[β]
≈ exp[β]

1 + exp[β]
(α− β)

=
exp[β]

1 + exp[β]

ω

kBT
=

1

1 + exp[−β]

ω

kBT
≈ 1

1 + exp[−(µe − k2/8)/kBT]

ω

kBT

4One may also worry about the interval (s2, 2s2] but it does not seem to be an issue in practice.
5Since the singularities are logarithmic, the rate at which the “g” part grows is much slower than the rate at which

the sech decays.

21

Los Alamos Warm Dense Matter Summer Workshop

and the observation,

−1

ε(k, ω)
=

Im[ε(k, ω)]

Re[ε(k, ω)]2 + Im[ε(k, ω)]2
≈ 2ω

k3Re[ε(k, 0)]2 + 0

(
1

1 + exp[−(µe − k2/8)/kBT]

)
,

reveals a simplified formula dielectric component to Eq. 4. Hence the value of Eq. 4 at ω = 0 is

S0
ee(k, 0) =

kBT

Re[ε(k, 0)]2
1

2π2nek

(
1

1 + exp[(k2/8− µe)/kBT]

)
.

For numerical reasons, it is beneficial to set the value of S0
ee to the above quantity once the value of

|ω| falls below some user specified tolerance.
As a check to make sure the dielectric function was being computed correctly, results were compared

to calculations in published papers (for example [3] and [5] which are detailed in 3.2), compared to the
Lindhard dielectric function, and compared to computations performed in Mathematica. In general
good results were obtained with as few as (100, 200, 200, 32) points in the four integration regions,
respectively. However, in the code developed to compute the RPA dielectric function (2000, 4000,
4000, 128) points were used.

A.4 Beyond RPA Mathematics

After carefully going through the derivation of the non-complex frequency version, it is straightforward
to see how the integral for the real and imaginary part gets modified to include complex frequencies.
Denote the real and imaginary part of the Born approximation to the dynamic collision frequency by
νr and νi respectively, in symbols

νB = νr + iνi.

A lot of the work has already been done in §A.1, if one makes the transcription ω → ω − νi and
ν → 2νr. The justification for this can be seen from the calculation

1

k2 − 2pkµe + 2ω + iν
+

1

k2 − 2pkµe − 2ω − iν
→ 1

k2 − 2pkµe + 2(ω + iνB) + iν

+
1

k2 − 2pkµe − 2(ω + iνB)− iν

=
1

k2 − 2pkµe + 2(ω + iνr − νi) + iν

+
1

k2 − 2pkµe − 2(ω + iνr − νi)− iν

=
1

k2 − 2pkµe + 2(ω − νi) + i(2νr + ν)

+
1

k2 − 2pkµe − 2(ω − νi)− i(2νr + ν)

and setting the value of ν to zero. Note that the real part of the dynamic collision frequency is always
positive.

The arguments from before carry through with the previously mentioned transcription. For conve-

22

Los Alamos Warm Dense Matter Summer Workshop

nience define the following quantities

g(p; k, ω, νB) ≡ log

(√
(k2 + 2(ω − νi) + 2pk)2 + (2νr)2

(k2 + 2(ω − νi)− 2pk)2 + (2νr)2

)

+ log

(√
(k2 − 2(ω − νi) + 2pk)2 + (2νr)2

(k2 − 2(ω − νi)− 2pk)2 + (2νr)2

)
ϕ(p; k, ω, νB) ≡ arctan(2νr, k

2 + 2(ω − νi) + 2pk)− arctan(2νr, k
2 + 2(ω − νi)− 2pk)

+ arctan(−2νr, k
2 − 2(ω − νi) + 2pk)− arctan(−2νr, k

2 − 2(ω − νi)− 2pk)

With these definitions the real and imaginary parts of the integral become

Re[εRPA(k, ω + iνB)] = 1 +
2

πk3

∫ ∞
0
F(p2/2;µe, kBT)g(p; k, ω, νB, ν)pdp

Im[εRPA(k, ω + iνB)] =
2

πk3

∫ ∞
0
F(p2/2;µe, kBT)ϕ(p; k, ω, νB, ν)pdp

Although there are no singularities in either integral, if the value of the dynamic collision is small then
the real part of the dielectric function will develop sharp cusp-like features and the imaginary part
may have finite precision errors. The numerical integration scheme for the above quantities as well as
the dynamic collision frequency are discussed in the next section.

A.5 Beyond RPA Computation

The real and imaginary parts of the dielectric function are given by the formulas

νr(ω) =
Ω2

0

24π3Zf

∫ ∞
0

k6[V S
ei (k)]2Sii(k)

1

ω

[
Re
[
εRPA
e (k, 0)

]
− Re

[
εRPA
e (k, ω)

]]
dk,

νi(ω) =
Ω2

0

24π3Zf

∫ ∞
0

k6[V S
ei (k)]2Sii(k)

1

ω
Im

[
εRPA
e (k, ω)

]
dk.

Both of these are computed using the same integration scheme, a cotangent remapping. This technique
transforms an integral of the form ∫ ∞

0
f(x)dx

into ∫ π

0
f(cot(u/2))

1

2 sin2(u/2)
du.

The integral above is handled numerically using a trapezoid rule. Note that the value of the function
at u = 0 corresponds to the value of the integrand at infinity, which should be zero. The use of Gauss-
Laguerre integration was also considered, but was generally found to be inferior to the cotangent
remapping for various cases. Note that computing the dynamic collision frequency involves computing
the random phase approximation to the the dielectric function for several values of k, hence it is much
more computationally expensive.

To handle the computation of the real and imaginary parts of the random phase approximation to
the dielectric function with complex frequencies different schemes were used for the real and imaginary
parts. The scheme for the real part resembles the one described in §A.2, except a cotangent remapping
is used for the interval from [2s2,∞). For the imaginary part a cotangent remapping is used.

As was mentioned previously, computing the dynamic collision frequency can be fairly costly. When
computing the RPA dielectric function, the number of points used were (100, 200, 200, 128) in the

23

Los Alamos Warm Dense Matter Summer Workshop

respective regions. The amount of time that it takes to compute the dynamic collision frequency was
found to scale linearly on the total number of points used to compute the real part of the dielectric
function. Also, it scaled linearly with respect to the number of sampled k values in the integrand of
the dynamic collision frequency. The RPA dielectric function with complex frequencies was evaluated
with no fewer than one thousand integration points for both the real and imaginary parts.

B Computation of the Bound-free Structure Function

Essentially, computing the bound-free structure function amounts to summation over the probabilities
of all possible transitions for a given k and ω. Thus, in theory, the double sum in Eq. (12) over values of
`1 and `2 is infinite. However, the sum can be truncated, because the transition probabilities decrease
rapidly as `1 and `2 increase. Unfortunately, it is not clear at a glance how many values of `1 and `2
are needed to produce a suitably accurate result. Thus the general scheme of computing Sb(k, ω) is as
follows (the infinity norm in step 4 is the single largest magnitude of the pointwise difference between
the functions):

1. Set a maximum value `max for `1 and `2.

2. Compute Eq. (12) using Eq. (13) and Eq. (10) to obtain Sold
b .

3. Increase `max and repeat the calculations in step 2 to obtain Snew
b .

4. If
∥∥Snew

b − Sold
b

∥∥
∞ is sufficiently small, take Snew

b as the result. Otherwise, continue to step 5.

5. Set Snew
b to be the new Sold

b , and repeat steps 3-4.

With a suitable initial choice of `max, the process described above generally converges quickly. As
can be seen from the scheme, the convergence check currently requires the full function Sb(k, ω) to be
computed for each new value of `max. Another scheme, seeking convergence in `2 for each successive
value of `1, may prove superior, but this has not yet been implemented.

As for the computation of Sb during a single iteration, a few notes are in order. In calculating
Eq. (10), the Wigner 3-J symbols are imported from a table generated using the Wolfram Mathemat-
ica function ThreeJSymbol. The integrand in Eq. (13) is computed as a single function of r before
being evaluated via trapezoidal integration with the maximum resolution of points available on the
wavefunctions Pn` and Pε`1 , which are provided by the AA+TCP model. The computation process is
straightforward, but can be rather computationally expensive. This arises from the fact that it consists
of a summation over energy states with an integral in r-space at every energy state, at every value
of ω to be considered, and at every combination of `1 and `2. A few considerations effectively ease
the process; first, Wigner 3-J symbols have associated selection rules, which, if not satisfied, render
A`1``2 zero. Thus, in looping through all possibilities for `1 and `2, the integral in r-space and other
computations that would go unused are omitted if the selection rules are not satisfied.

Second, the total integrand in Eq. (13) is dominated by the bound state wavefunction beyond a
certain threshold r, since the bound state rapidly approaches zero and no other multiplicative terms in
the integrand are large. Thus it is possible to identify a point in the bound state wavefunction beyond
which the integrand will no longer substantially contribute to the total integral value. This identifies a
computational “infinity” up to which to perform the integral. Without choosing such a point, it would
be necessary to integrate the integrand on the entire r-array on which the AA+TCP model computes
the wavefunctions. Preliminary results show that reducing the integral limit in this way substantially
improves speed with no distinguishable consequence to accuracy.

A last optimization focuses not on the individual calculations of Sb(k, ω) but on judiciously choosing
an initial value of `max. The time required for an iteration of the bound-free computation is, naturally,

24

Los Alamos Warm Dense Matter Summer Workshop

T (eV) θ (◦) Zf µ (a.u.) α k (a.u.) G(k) = Sii(k) |f(k) + q(k)|2 (a.u.)

10 20 2.313 −2.17× 10−2 2.723 0.276 28.59

10 40 2.313 −2.17× 10−2 1.383 0.543 36.36

10 60 2.313 −2.17× 10−2 0.946 0.794 49.56

10 80 2.313 −2.17× 10−2 0.736 1.020 64.79

10 100 2.313 −2.17× 10−2 0.617 1.216 75.64

10 120 2.313 −2.17× 10−2 0.546 1.375 79.61

10 140 2.313 −2.17× 10−2 0.503 1.492 79.43

10 160 2.313 −2.17× 10−2 0.480 1.563 78.24

5 30 2.143 0.240 2.172 0.411 26.55

10 30 2.313 −2.17× 10−2 1.827 0.411 31.76

20 30 2.846 -0.716 1.522 0.411 32.01

50 30 4.730 -3.612 1.278 0.411 22.50

5 130 2.143 0.240 0.620 1.439 84.83

10 130 2.313 −2.17× 10−2 0.522 1.439 79.81

20 130 2.846 -0.716 0.435 1.439 72.11

50 130 4.730 -3.612 0.365 1.439 47.99

Table 3: Run parameters and results for the runs discussed in §3.3.

dependent on the current value of `max. Greater values of `max imply looping over more values of `1
and `2, and thus the computation takes longer. However, smaller choices for an initial `max require
more computation iterations before convergence. Thus it is preferable to choose the smallest `max such
that the first and second iterations are within the specified tolerance. Unfortunately, there is no firm
rule for this choice. A suitable choice for `max depends on the material properties and the specific
parameters of the scattering experiment. Materials with a greater number of electrons have more
transition possibilities and so larger values of `1 and `2 play a more significant role in their bound-free
structure function. Hence, as a rough approach to select the correct first value of `max, the material
atomic number is used. While not perfect, this usually leads to convergence in no more than four
iterations. As the number of iterations required seems to depend on k as well, it may be prudent to
somehow scale the atomic number by k to improve convergence speed; this remains unimplemented. A
complete reformulation of the convergence check, as described earlier in this section, may be preferable.

C Parameter Dependence Case Details

Details on the various runs discussed in §3.3 are shown in Table 3. All runs concern aluminum at solid
density (ρ = 2.7 g/cm3) with incident photon energy ω0 = 2960 eV. The ion number density is the
same for all cases: ni = 6.026× 1022; the electron density is the product ne = Zfni.

25

Los Alamos Warm Dense Matter Summer Workshop

References

[1] C.E. Starrett and D. Saumon, Phys. Rev. E 87, 013104 (2013)

[2] J. Chihara, J. Phys. Condens. Matter 12, 231 (2000)

[3] W.R. Johnson, J. Nilsen, and K.T. Chang, Phys. Rev. E 86, 036410 (2012).

[4] W.R. Johnson, J. Nilsen, and K.T. Chang, High Energy Density Physics 9, 407, (2013)

[5] S.H. Glenzer and R. Redmer, Phys. Rev. E 81, 1625 (2009)

[6] B.A. Mattern and G. T. Seidler, Physics of Plasmas 20, 022706 (2013)

26

Index

AA+TCP, 2, 7
average-atom, 2, 7

bound-free feature, 2, 6
bound-state wavefunctions, 2

chemical potential, 2
collective regime, 4
complete Fermi-Dirac integral, 4

detailed balance relation, 5
dimensionless scattering parameter, 4
double differential scattering cross-section, 2
dynamic collision frequency, 5

elastic feature, 2, 3
electron screening wavenumber, 4
electron-electron feature, 2
extended Mermin ansatz, 5

Fermi occupation factor, 4, 6
free wavefunctions, 2
free-electron feature, 2

ICF, 2
inertial confinement fusion, 2
ion-ion feature, 2

Lindhard dielectric function, 22

non-collective regime, 4
number of free electrons per ion, 3

occupation number, 6, 7

plasma frequency, 10
plasmon resonances, 5

random phase approximation, 3
RPA, 3

screening potential, 2
static structure factor, 3
structure function, 2

thermal ion motion, 3
two component plasma, 2

Warm dense matter, 2
WDM, 2, 3

Wigner 3-J symbol, 7

X-Ray Thomson Scattering, 2
XRTS, 2

27

2013 Computational Physics Student Summer Workshop: Final Reports

The VEX Radiation Module: 2D
Radiation Transport with Mimetic

Diffusion for ExaFLAG

(Jimmy Fung and Mack Kenamond,
mentors)

LA-UR-13-26513
Approved for public release; distribution is unlimited.

Title: THE VEX RADIATION MODULE: 2D RADIATION TRANSPORT WITH MIMETIC
DIFFUSION FOR EXAFLAG

Author(s): Powell, Devon M.
Lovegrove, Elizabeth G.
Fung, Jimmy
Kenamond, Mark A.

Intended for: Summer Computational Workshop, 2013-06-10/2013-08-16 (Los Alamos, New
Mexico, United States)
Report

Issued: 2013-08-16

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National
Security, LLC for the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.
By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to
publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.
Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the
U.S. Departmentof Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish;
as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

THE VEX RADIATION MODULE:

2D RADIATION TRANSPORT WITH MIMETIC DIFFUSION FOR EXAFLAG

ELIZABETH LOVEGROVE1 AND DEVON POWELL2,
MENTORED BY JIMMY FUNG3 & MACK KENAMOND3

Abstract. The VEX (Variable Eddington for eXaFlag) Radiation Module is a new physics module
for the ExaFlag advanced architecture testbed that implements radiation transport coupled to
hydro. VEX solves the angle- and frequency-averaged transport equations under the diffusion
approximation using a variable Eddington factor, allowing it to more correctly represent behavior
in optically thin regimes. It uses a mimetic diffusion solver to solve for the radiation energy density.

1. Introduction

ExaFlag is a testbed for advanced architectures modeled on the FLAG unstructured Lagrangian
hydrodynamics code. ExaFlag uses the same unstructured mesh data types as FLAG and has a
similar overall design, meaning that innovations developed in ExaFlag can be fed back into FLAG.
ExaFlag is written in C++ and is meant to serve as a lightweight code for testing out new ideas in
optimization, algorithms, and code design. It can be used to test new algorithms and new potential
operator splits without the burden of modifying a large, fully-featured production code like FLAG.
For our project during the 2013 Computational Physics Summer Workshop, we implemented a
2D radiation transport module called VEX (Variable Eddington for eXaFlag) that uses a mimetic
diffusion solver to advance the radiation energy equation.

2. Equations of Radiation Transport

2.1. Flux-Limited Diffusion. We define the radiation energy density as Er, the radiation flux

as the vector ~F , and the radiation pressure as the tensor P. The general moments of radiation
transport averaged over angle and frequency in the comoving Lagrangian frame to order O(v/c)
are (Buchler 1983, Castor 2004):

∂Er
∂t

+∇ · (~uEr) = −∇ · ~F − P : ∇~u+

∫
(4πjν − ckνEr,ν) dν(1)

1

c

∂ ~F

∂t
+

1

c
∇ · (~u~F) = −c∇ · P −

∫
kν ~Fν dν(2)

These equations are derived by starting from the radiation intensity equation and taking successive
moments. Since each moment of the radiation intensity involves the next higher moment, the
system can only be closed by assuming a form for the highest moment in terms of the lower ones.
The diffusion approximation closes the radiation transport equations by representing radiation flux
as a diffusion process with a Fick’s Law form:

~F = −D∇Er(3)

1UC - Santa Cruz Department of Astronomy & Astrophysics
2Stanford University Department of Physics
3Los Alamos National Laboratory

1

2 THE VEX RADIATION MODULE

A closure for P, however, is now necessary. The relationship between Er and P is called the
Eddington factor f , defined as:

f =
Pzz
Er

(4)

In the simplest diffusion approximation f = 1/3, derived by noting that Tr[P] = Er and deep in
an optically thick material P ought to be isotropic. Thus off-diagonal elements of P should vanish
and diagonal elements of P should be identical. This leads to:

P =
1

3
ErI(5)

~F =
1

3

c

χR
∇Er(6)

where I is the identity tensor. We additionally assume that the radiation spectrum has a blackbody
form. With these substitutions and simplifications the radiation energy equation in the comoving
frame becomes:

ρ
D

Dt

[
Er
ρ

]
= ∇ ·

(
c

3χR
∇Er

)
− 1

3
∇ · ~u+ cκ(aT 4 − Er)(7)

This is the standard Eddington approximation.
The diffusion approximation captures many of the essential features of radiation transport, es-

pecially in optically thick regimes, and has the advantage of being simple and computationally
tractable. For this reason it is used in many radiation transport codes. The standard Eddington
approximation performs well in optically thick regimes and is qualitatively accurate in optically
thin. However the dropped terms in the flux equation, as well as the general assumption that the
material is optically thick everywhere, will lead to a significant error in the results. This approxima-
tion will also lead to the diffusion solver attempting to propagate radiation infinitely fast as χR → 0
and the system becomes optically thin. We can mitigate these errors somewhat while continuing
to use the diffusion approximation by varying f as some function of the optical properties of the
system to give more correct behavior in the thin limit, hence the name variable Eddington factor.

There are many ways of choosing or calculating the form of f . We adopt the method known
as flux-limited diffusion. We introduce the flux limiter λ in the diffusion coefficient, giving it the
form D = cλ/χR instead. Then f is calculated as some function of λ. For the form of λ and the
corresponding closure of P we use the analysis of Levermore and Pomraning 1981 and Levermore
1984. These papers define the variable R = |∇Er|/χREr and from it compute a spatially-varying
λ and f :

λ =
1

R

(
cothR− 1

R

)
≈ 2 +R

6 + 3R+R2
(8)

f = λ+ λ2R2(9)

P =
Er
2

((1− f)I + (3f − 2)n̂n̂)(10)

In the optically thick limit, R → 0, λ → 1/3 and f → λ. The pressure tensor closure then goes
to (Er/3) I and the Eddington approximation is recovered. In the optically thin limit, however,
R→∞, λ→ 0, f → 1, and the pressure tensor becomes (Er/2) n̂n̂. χR in the diffusion coefficient
cλ/χR will go to zero, but λ will also decrease to compensate. The flux is therefore limited to
moving at lightspeed rather than attempting to propagate infinitely fast as χR → 0, as it will
under the standard Eddington approximation.

THE VEX RADIATION MODULE 3

Under this approximation, the coupled radiation-hydro equations in the Lagrangian frame be-
come:

ρ
D~u

Dt
= −∇P − λ∇Er(11)

ρ
De

Dt
= −P∇ · ~u− cκ(aT 4 − Er)(12)

ρ
D

Dt

[
Er
ρ

]
= ∇ ·

(
cλ

χR
∇Er

)
− P : ∇~u+ cκ(aT 4 − Er)(13)

where e is material specific internal energy. These are the equations solved by VEX. Equation
11 is the conservation of momentum equation and now has one force term for the usual pressure
gradient and one force term representing momentum exchange with the radiation. Equation 12
is the hydro internal energy equation and contains the usual PdV work term plus a contribution
from absorption/emission exchange with the radiation. Equation 13 is the new radiation energy
equation, derived in the same way as Equation 7 but without making the f = 1/3 substitution.

The notation P : ∇~u indicates a tensor contraction. Expanded out into components this term
becomes:

P : ∇~u = Pij
duj

dxi
(14)

= Pxx
∂ux
∂x

+ Pyy
∂uy
∂y

+ Pxy
(
∂ux
∂y

+
∂uy
∂x

)
(15)

since the tensor is symmetric. From the closure of Equation 10 the components of P become:

Pxx =
Er
2

(
1− f +

(3f − 1)

|∇Er|2
(∇Er,x)2

)
(16)

Pyy =
Er
2

(
1− f +

(3f − 1)

|∇Er|2
(∇Er,y)2

)
(17)

Pxy =
Er
2

(
(3f − 1)

|∇Er|2
∇Er,x∇Er,y

)
(18)

When f → 1/3 the cross-term disappears and the diagonal terms become Pxx = Pyy = Er/3,
reducing this term to (1/3)∇ · ~u as in Equation 7.

These equations conserve energy but not momentum, as the source exchange term cκ(aT 4−Er)
is mirrored in both the hydro internal energy equation and radiation energy equation, but the
momentum exchange term λ∇Er has no counterpart since we do not explicitly track radiation
momentum. The use of a variable λ, while improving the accuracy of the method, also introduces
additional complications stemming from the fact that the diffusion coefficient is now a function of
space and time. Specifically, the momentum coupling term λ∇Er can now no longer be folded into
the ∇P term as a simple “radiation pressure,” since λ can no longer be moved inside the gradient.
The tensor contraction P : ∇~u must now be calculated in full instead of being reduced to (1/3)∇·~u.
However, with the proper operator splits and diffusion solver, these constraints can be handled with
minimal complication.

2.2. Treatment of Terms.

2.2.1. Hydrodynamic Coupling Terms. The equations solved by VEX contain two terms that couple
radiation and hydro: one in the momentum equation that represents the transfer of momentum from
radiation to gas; and one in the energy equations that represents energy exchange via absorption
and emission.

The source term cκ(aT 4 − Er) is quite stiff and, if treated explicitly, will constrain the code to
a cooling timescale that is in many cases very small. Therefore we split this term off and treat it

4 THE VEX RADIATION MODULE

implicitly. Our treatment is based on the work of Morel (unpublished lecture notes) and results in
the following equation for material specific internal energy:

ek+1 =

ρi
∆te

k + cκ(Ekr + 3a
cV
T 4,k)

ρi
∆t + 4acκ

cV
T 3,k

(19)

where the units of κ are cm−1 and a is the radiation constant 4σ/c.
The momentum term λ∇Er is not difficult to calculate in itself, but care must be taken when

adding it to the hydro momentum equation. If the hydro portion of the code uses a compatible
work formulation, as the staggered-grid hydro in ExaFlag does, then if this term is added in the
wrong place it will also be included in the hydro energy equation, producing a spurious radiation
“work” term. In fact in the comoving frame, if only internal energy is considered, radiation will
appear to do no work. Its effects appear instead in the kinetic energy term, and if total energy is
instead evolved a radiation term will appear.

2.2.2. Radiation Energy Density. The radiation energy density equation is solved as a whole via
the mimetic diffusion solver, as discussed in Section 4. The diffusion solver advances an equation
of the form:

a
∂u

∂t
= ∇ · K∇u+ fD(20)

where u is the quantity of interest and fD is some set of source terms (not to be confused with
the Eddington factor f). We therefore calculate both the exchange term cκ(aT 4 − Er) and the
radiation pressure term P : ∇~u and combine them into fD. We then use the current values of Er
to calculate λ and from there the diffusion coefficient K. Then the entire equation is handed off to
the diffusion solver along with a timestep, which solves implicitly for the updated value of Er at
the new time.

3. Module Design

VEX’s additions to the ExaFlag testbed are contained largely within two new base classes,
TransportBase and FieldBase, and two new classes, FLDsolver and DiffusionFC.

TransportBase is analogous to the hydro class HydroBase in that it provides an abstract base
class for a physics module, in this case a module capable of solving a transport equation for
some quantity. TransportBase makes no assumptions about the quantity to be transported (e.g.
photons, neutrinos, etc.) nor about the physics implemented to solve the transport equations.
FLDSolver inherits from TransportBase and implements the specific flux-limited diffusion physics
and solution method outlined in the previous section. FieldBase implements a basic field that
tracks radiation state variables such as Er, but not FLD-specific variables such as λ and f . Thus
FieldBase is meant to remain agnostic to the transport solver used. DiffusionFC implements the
mimetic diffusion solver that will be outlined in Section 4. FLDSolver keeps an object of this class
and makes a call to it to solve the diffusion equation and advance the radiation energy.

FLDSolver consists of four main steps interleaved with the staggered-grid hydrodynamics mod-
ule, SGHydro. SGHydro currently uses a simple predictor-corrector scheme to advance the hydro
variables, but more complicated timestepping schemes such as RK4 could be added with a mini-
mum of effort. In the current form, the FLD solver runs first. First the code calculates R, λ, and
f . Then it solves implicitly for the new ek+1 updated for the cκ(aT 4 − Er) source term, as shown
in Equation 19. We assert that the ρ∆e due to this term should exactly equal the ∆Er due to
this term, i.e. any energy lost by the radiation is gained by the material and vice versa. The code
stores this ∆e in the FieldBase object for later use in the hydro. Then it calculates the P : ∇~u
term and combines this with the source term to form the diffusion source terms fD. It computes
the spatially-varying diffusion coefficient from λ. Now we have sufficient parameters to perform
a diffusion solve. All of these variables are passed to a DiffusionFC object that then advances

THE VEX RADIATION MODULE 5

Figure 1. Flowchart of one timestep in the ExaFlag rad-hydro staggered-grid cycle.

Er. FLDSolver now recomputes ∇Er from the updated Er in order to calculate a new R on the
next iteration. Boundary conditions are reapplied to the new ∇Er. Finally the radiation module
computes a Courant-limited timestep recommendation based on a radiation-modified sound speed.

The SGHydro module now runs as normal, except that after it has computed force terms but
before computing work, the module makes a call to FLDSolver requesting the radiation force λ∇Er.
FLDSolver adds this term to the point forces used to update the velocity, but not to the quark
forces used to compute the hydro internal energy, in order to avoid introducing a radiation work
term. When SGHydro reaches the work update, it adds in the ∆e computed from the cκ(aT 4−Er)
source term in FLDSolver and stored in the FieldBase object before proceeding with the standard
work update.

4. Mimetic Diffusion Solver

We implemented a mimetic diffusion method for transporting radiation energy in the diffusion
approximation of the radiation energy equation (13). In this section, we will discuss the diffusion
equation in its most general form:

6 THE VEX RADIATION MODULE

(21) a
∂u

∂t
= ∇ · K ∇u+ fD

where a is the heat capacity (for diffusion of volumetric energy density, a = 1), u is the scalar
quantity being diffused, t is time, K is the diffusion coefficient, and fD is the source term. These
quantities can be directly compared to those in Equation 13 to see their relation to the radiation
energy terms.

4.1. Introduction to Mimetic Methods. Physical equations mathematically embody certain
important characteristics of the systems they describe. A canonical example is a conservation law
(of energy, mass, momentum, etc.). We want to preserve such characteristics when discretizing a
continuum system. Discrete methods that reproduce special properties of the continuum system
are said to be “mimetic.”

For purposes of presenting the mimetic method for diffusion, it will be useful to recast Equation 21
as

(22) a
∂u

∂t
= −∇ ·w + fD

where w ≡ −K ∇u is the flux.
Let us define the operators G and D over the spatial domain V bounded by the surface ∂V as

Dw ≡

{
∇ ·w in V

−w · n̂ on ∂V.
(23)

Gu ≡ −K ∇u(24)

The flux operator G is then a map from the space of scalars to the space of vectors:

(25) G : s→ v

and the divergence operator D is a map from the space of vectors to the space of scalars:

(26) D : v→ s

The maps defined by Equations 25– 26 suggest that the operators may have adjoint properties;
this is indeed the case:

(27) D = G∗

To prove this, we begin by defining the inner products

(28) (a, b)s ≡
∫
V
ab dV +

∮
∂V
ab dS

for the space of scalars s and

(29) (A,B)v ≡
∫
V
K−1A ·B dV

for the space of vectors v. We also make note of the divergence theorem:

(30)

∫
V
u ∇ ·w dV +

∫
V

w · ∇u dV =

∮
∂V
uw · n̂ dS.

The action of D in the inner product is (Dw, u)s, so with the inner products and divergence
theorem, we can show that this is equivalent to the action of G∗:

THE VEX RADIATION MODULE 7

(Dw, u)s =

∫
V

(Dw)u dV +

∮
∂V

(Dw)u dS(31)

=

∫
V
u∇ ·w dV −

∮
∂V
uw · n̂ dS(32)

= −
∫
V

w · ∇u dV(33)

= −
∫
V

wK−1K∇u dV(34)

=

∫
V

w · K−1Gu dV(35)

= (w,Gu)v,(36)

which is the definition of adjointness. This adjoint relationship, D = G∗, is the property we want
to preserve when moving to the discretized version of the diffusion equation.

There are two important points to be made with regard to such a mimetic discretization. First,
because it was derived from the divergence theorem, the scalar field u is exactly conserved. Second,
because the diffusion operator ∇·K∇u becomes DGu = G∗Gu, the resulting matrix equation will
be symmetric and positive-definite.

The above was an overview of the motivation for mimetic diffusion methods. For a more rigorous
derivation of the operator relationships which includes a treatment of the time derivative ∂u

∂t and
source term fD from Equation 21, see Shashkov and Steinberg 1996.

4.2. The DiffusionFC Module. There are many mimetic methods in the literature; the one we
implemented is described in Shashkov and Steinberg 1996. It discretizes the flux as a projection onto
face normals. This method gives second-order spatial convergence and a symmetric positive-definite
(SPD) matrix equation. It can accomodate non-convex and/or tangled meshes while maintaining
an SPD matrix; however, the method loses accuracy in these instances. Because the operators are
derived from the discrete divergence theorem, the scalar quantity u is exactly conserved. The time-
stepping scheme is implicit and first-order. Due to its implicitness, the method properly handles
the nonlinear case of the diffusion equation in which the diffusion coefficient K varies in space and
time.

Our implementation in ExaFlag is called DiffusionFC (for “face-centered”). DiffusionFC can
handle Neumann, Dirichlet, and mixed (Robin) boundary conditions contained in the module
DiffBC. Matrices are stored in compressed sparse row (CSR) format. In addition, DiffusionFC
has options for various threading and linear solver configurations.

4.3. Convergence. We verified spatial convergence rates for the diffusion solver using a test prob-
lem defined in Shashkov and Steinberg 1996. The problem is as follows:

(37)
1

v

∂u

∂t
=

∂

∂x

(
k
∂u

∂x

)
+

∂

∂y

(
k
∂u

∂y

)
+ fD

with

v = 300, k =
1

30
, f = x2

The boundary conditions are

k
∂u

∂y
= 0 at y = 0 and y = 1,(38)

u− 2k
∂u

∂x
= 0 at x = 0 and x = 1(39)

8 THE VEX RADIATION MODULE

This problem has the steady-state solution

(40) u = a+ bx+ cx4

where

a =
1

6

(
1 + 8k

1 + 4k

)
, b =

1

12k

(
1 + 8k

1 + 4k

)
, c =

−1

12k

Convergence results are shown in Table 1 for the set of test meshes shown in Figure 2. We found
that the square, randomly perturbed, and Kershaw meshes perform to second order, as expected
for quad meshes. The Voronoi mesh appears not to converge for nonlinear scalar fields, though we
did find that for linear fields the Voronoi mesh showed nearly first-order convergence.

In addition, we ran test problems with a linear scalar field (on all quad meshes) and a quadratic
scalar field (on the square mesh) to verify exact convergence for these cases. They performed as
expected, showing errors consistent with roundoff.

We used a trivial test problem (a constant scalar field with a time-varying source term) to verify
first-order temporal convergence. This also worked as expected.

(a) Square (b) Randomly perturbed

(c) Kershaw (d) Voronoi

Figure 2. Example test meshes (N = 10) for the diffusion solver.

4.4. Unstructured Meshes.

THE VEX RADIATION MODULE 9

N Max. Error Rate

5 1.17E-1 –
10 3.22E-2 1.86
25 5.44E-3 1.94

100 3.49E-4 1.98
250 5.61E-5 1.99

(a) Square

N Max. Error Rate

5 1.38E-1 –
10 3.79E-2 1.87
25 6.91E-3 1.86

100 5.96E-4 1.77
250 9.27E-5 2.03

(b) Randomly perturbed

N Max. Error Rate

5 1.73E-1 –
10 5.46E-2 1.66
50 7.69E-3 1.22

150 1.20E-3 1.69
250 4.83E-4 1.79

(c) Kershaw

N Max. Error Rate

5 8.01E+0 –
10 9.01E+0 -0.17
25 1.00E+1 -0.11

100 1.10E+1 -0.07
250 1.20E+1 -0.09

(d) Voronoi

Table 1. Error data and convergence rates for the diffusion test problem defined
in Equations 37–40 on each of the meshes shown in Figure 2.

4.4.1. Limitations. There are a few key differences between unstructured and structured meshes.
Stencil size and connectivity are unknown a priori, so this information must be determined before
any element retrieval and matrix assembly occurs. This also affects sparse matrix storage formats
like CSR, which require knowledge of the number of nonzero elements per row prior to the insertion
of matrix values. Stencil elements are not (in general) contiguous in memory, so memory access
patterns are random and inefficient. The matrix assembly process is therefore not easily vectorized.
Finally, although the matrix structure is sparse, it will not be banded as matrices yielded by struc-
tured mesh methods are. This may have consequences for hardware acceleration and optimization
of certain linear solvers.

4.4.2. Treatment in DiffusionFC. A novel aspect of DiffusionFC is that it traverses and stores
all of the stencil connectivity data prior to matrix assembly. The original intent was to speed
up the code by reducing extraneous pointer-hopping during the matrix assembly process, though
after running some tests we determined that there was no appreciable change in execution time.
However, we did gain some useful features from a software design perspective.

Because this mimetic method is face-centered (see Figure 3a), we need connectivities linking each
face to its neighboring corners, zones, and faces. This can only be accomplished by looping over
sides, which have explicit connectivity arrays for all three (for a complete description of the mesh
structures in ExaFlag and FLAG, see Burton 1992). Face-centered stencil connectivities are thus
built using side loops, allowing the rest of DiffusionFC to loop over faces in a more natural way.
This also made the implementation of threading with OpenMP somewhat easier, as it isolated the
threading bottleneck described in Section 4.5.

In addition, by isolating the stencil traversal code (which has multiple nested loops and condi-
tional branches) in a dedicated function, we were able to make the matrix assembly code much
cleaner and more readable.

Boundary conditions are now modularized so that the interface is more intuitive. Because this
diffusion method requires a global solve, boundary conditions must be applied as a direct modifica-
tion to many matrix elements. Pre-built connectivity data allow us to cleanly move the application

10 THE VEX RADIATION MODULE

of boundary conditions into a dedicated container class, DiffBC, which can be used in a manner
similar to that of a local method like hydrodynamics.

A final benefit of pre-traversing the stencil connectivity is that it we can determine the number
of nonzero elements in each row of the matrix, allowing DiffusionFC to use CSR-format matrix
storage for large problems.

(a) The stencil (b) Connectivity storage

Figure 3. (a) The stencil for the mimetic diffusion method and (b) schematic of
the resulting connectivity array.

We tried several different storage formats for stencil connectivity, though only two were thread-
safe. The first of these was a linked list scheme which proved to be extremely cumbersome and slow
to traverse and allocate; this has been removed from the code. The final version uses a hash map
in the form of a 2D ragged array, each column of which contains the connectivity data for one face
(see Figure 3b). It is fast and clean for traversal, dynamic resizing, and reallocation operations.

4.5. Acceleration. Once certain that the DiffusionFC was working as designed, we began thread-
ing stencil connectivity traversal, coefficient computation, and matrix assembly routines with
OpenMP. Without much effort, threading accelerated these routines by a factor of 8–10 with a
“sweet spot” around 16–20 threads (see Figure 4).

At this time, there is still an unresolved bottleneck in threading the stencil connectivity traversal.
Because this process loops over sides (see Section 4.4.2), the code includes a boolean flag for each
face which prevents double-counting. In certain cases, two threads can enter the loop body for a
single face before either one has had time to change this flag, causing a crash (this is why were
only able to run up to 16 threads on the 25× 25 mesh in Figure 4). Using #pragma omp critical

causes the code to run much slower than even the fully serial case; we are still working on a good
way to circumvent this issue.

The linear solve is by far the most expensive part of the diffusion cycle, taking up > 80% of the
total computation time. Various linear solver options are discussed in Section 4.6. This a topic for
further investigation.

All of the convergence and timing tests presented here were done with using the Intel PARDISO
solver, which despite being a costly direct solve is one of the faster methods we have tried so far.
The use of a direct solver for convergence studies allowed us to separate errors in the mimetic
method from errors due to the finite convergence tolerance of an iterative solver.

THE VEX RADIATION MODULE 11

Figure 4. Speedup of stencil traversal and matrix assembly with OpenMP. Run
times are normalized to the total diffusion cycle time (including the linear solve) for
a single thread.

4.6. Linear solvers. We implemented several linear solver packages in DiffusionFC. They are
enumerated here with a short description and comments:

LAPACK dgesv()

A direct solver which takes a full, row-major formatted matrix. This was quite easily to
implement, but was unsurprisingly slow and impractical for larger systems which necessi-
tate sparse matrix storage. Once better solvers were in place, we removed this option from
ExaFlag.

Intel PARDISO
A direct solver which takes a matrix in CSR format. One may set various options regarding
the symmetry, definiteness, bandedness, etc. of the matrix. We used the most general
(asymmetric indefinite) solver configuration available, though with some implementation
changes this could be a promising solver for the symmetric positive-definite matrix given by
the mimetic diffusion method. Though it uses an expensive direct method of order O(n3),
this solver is threaded and quite fast even for large systems.

Hypre BoomerAMG
An algebraic multigrid solver (AMG) from the High Performance Preconditioners library
(HYPRE) out of Lawrence Livermore National Laboratory. This solution method is of or-
der O(n) per iteration, with (ideally) an order of magnitude reduction in residual error at
every iteration. As such, BoomerAMG was originally expected to be the best-performing
solver in the field, but after some testing it appears that the face-centered solve required by
the mimetic diffusion method is unsuitable for multigrid solution, delivering unacceptably
slow convergence. In spite of this, the BoomerAMG option is still present in the diffusion
solver.

12 THE VEX RADIATION MODULE

Conjugate gradient
A tried-and-true iterative solver for SPD matrix equations of order O(n) per iteration. This
was implemented directly in the ExaFlag container class MySPD using a canned algorithm
from Shewchuk 1994 and requires no external modules. It converges quite fast, though there
is still much room for improvement. Ideally, this could be extended into a highly parallel,
preconditioned method.

Steepest descent
Another iterative solver for SPD matrix equations. This implementation was also taken
from Shewchuk 1994. Its convergence is much slower than that of the conjugate gradient
solver, so its use is not recommended. Its inclusion in ExaFlag is purely academic.

It is worth noting that iterative solvers can be initialized with the result from the previous
diffusion solve. If the problem is slowly varying or close to equilibrium, this drastically reduces the
number of iterations needed for the solver to converge.

Chapter 11 of Castor 2004 has a comprehensive overview of linear solve methods for diffusion in
a radiation hydrodynamics context.

5. Test Problems for VEX

We feature three main test problems here that demonstrate the source terms, the radiation-hydro
coupling, and the variable Eddington factor. All of these tests were conducted on a 100x100 square
mesh.

5.1. Heating & Cooling Problem. This test problem uses a box of uniform gas and a uniform
radiation field that are initialized at different temperatures. The gas velocity is frozen and the only
change in its state comes through the source exchange terms with the radiation. In the heating
test the gas is started below its equilibrium temperature with the radiation; in the cooling test
it is started above it. In both cases the gas temperature should converge to equilibrium with the
radiation. The radiation energy density is orders of magnitude larger than the gas energy density
and so will remain effectively constant through the test. This problem is solved analytically in
Turner and Stone 2001 and serves to test both the accuracy of the source terms and the stability
of the implicit solve, as the natural timescale of the cooling test is 10−14 s and the code attempts
to take 10−11 s timesteps.

The parameters used for this test were the same as Zhang et al. 2011: Er = 1012 erg cm−3,
∆t = 10−11 s, and ρe = 102 erg cm−3 (heating) or ρe = 1010 erg cm−3 (cooling). The gas had a
density ρ = 10−7 g cm−3, a Planck mean opacity κ = 4× 10−8, a mean molecular weight µ = 0.6,
and a gamma-law equation of state with γ = 5/3. It was initialized with zero velocity and not
allowed to move for the duration of the test. The results of this test can be seen in Figure 5.

The blue symbols on the figure show the cooling test, the red the heating test. The solid
lines denote the analytic solutions. The code correctly heats and cools the gas to its equilibrium
temperature using timesteps longer than the cooling timescale. In the case of the cooling test the
module significantly undercools for the first few timesteps, but converges to the correct equilibrium
value. Iteration of the solve on e and Er might mitigate this problem and is an area for future
work.

5.2. 1D Shocktube Problem. This test problem demonstrates a shocktube in 1D with radiation
coupling. The left side of the domain is initialized at a higher internal energy than the right,
causing a shock to form and propagate rightwards. The test problem was again initialized with
the parameters of Zhang et al. 2011: uniform gas density of ρ = 10−5 g cm−3 and uniform zero
initial velocity, with the left half of the domain set to TL = 1.5 × 106K and the right half set to

THE VEX RADIATION MODULE 13

Figure 5. Results of gas heating/cooling tests. The red (blue) symbols indicate
gas initialized at a lower (higher) temperature than equilibrium. Solid black lines
indicate analytic solutions. The dot-dashed line marks the equilibrium gas energy
density. In both cases the gas converges on the correct temperature.

TR = 3 × 105 K. The gas is again assumed to have a gamma-law EOS with γ = 5/3. The mean
molecular weight is µ = 1 and the opacities are set to κ = 106 cm−1, χR = 108 cm−1, thus making
the gas and radiation tightly coupled. We therefore expect the gas temperature and radiation
temperature to be near equilibrium.

The results are shown in Figure 6. The density spike and rarefaction behind it are clearly
discernible in the lower surface. The upper surface shows radiation energy density, which tracks
the shock well.

5.3. Optically Thin Diffusion Problem. This test problem uses a uniform box of optically thin
gas with a radiation pulse initially located at one side of the domain. In the standard Eddington
approximation the diffusion coefficient will grow very large and the diffusion solver will propagate
this pulse at infinite speed. In the flux-limited diffusion approximation, by contrast, the flux limiter
should constrain the pulse to propagate at lightspeed. This test was conducted with the gas held
still and radiation forces turned off. Gas density is set to ρ = 10−7 g cm−3 and opacities are set
to κ = 0, χR = 10−4 cm−1. The timestep is 1.668×10−11 s i.e. ∆x/(2c) and the radiation field is
initially at Er = 10−10 erg cm−3, excepting the region adjacent to the leftmost boundary which is
set to Er = 1 erg cm−3.

The results can be seen in Figure 7. The golden line marks the correct location of a pulse traveling
at lightspeed at the indicated time. The radiation pulse is moving at approximately the correct
speed; by contrast, the same test conducted with λ = 1/3 results in a completely flat radiation field

14 THE VEX RADIATION MODULE

Figure 6. Ensight visualization showing a 1D shocktube problem. The lower sur-
face height indicates density, the lower surface color indicates magnitude of velocity.
The upper surface height and color indicates radiation energy density. The shock-
tube shows the expected density spike and rarefaction. The radiation energy tracks
the shock.

after one timestep. Thus we have demonstrated that the variable flux limiter is correctly limiting
radiation to propagating at lightspeed.

6. Future Work

6.1. Cell-centered Hydro. Currently VEX is implemented for the staggered-grid hydro module
in ExaFlag. We would like to extend it to also work with the existing cell-centered hydro mod-
ule. However, the cell-centered method raises interesting concerns regarding the correct operator
splitting with radiation. Should the radiation momentum term be included in the Riemann-like
vertex solve for velocity, or can this term be added later? Staggered-grid hydro tracks only internal
energy, but cell-centered hydro tracks internal, kinetic, and total energy; as a result care must be
taken to ensure that all radiation energy deposition is accounted for. Further work is needed to
outline the correct operator splitting procedure.

6.2. Physics Improvements. A few improvements are possible to the physics of the code to
make it applicable to a wider range of problems. The most immediately useful would be allowing
temperature-dependent opacities and more complex equations of state. Currently the code relies
on fixed opacities and a gamma-law equation of state. As the opacity is already treated as a spatial
array within the code, temperature-dependent opacities could be implemented with a minimum of
effort. For more complex work, however, both the opacity and EOS routines should eventually be

THE VEX RADIATION MODULE 15

Figure 7. Ensight visualization of lightspeed diffusion test. The height and color
of the surface indicate radiation energy density. The gold line marks the correct
propagation distance for a pulse traveling at lightspeed.

replaced by calls to packages capable of handling more complex physics such as spectral lines and
radiation-modified sound speeds.

6.3. Multiple Fields. FLDSolver currently handles only one field, but it has been designed to
make it easy to upgrade to more. The major change involved would be expanding the class to store
multiple R, λ, and f arrays. This capability could let the VEX module handle other transported
quantities such as neutrinos, or possibly form a path towards a multigroup version of the code.
In the multigroup case, however, the class would need to be extended with the ability to couple
energy exchange between fields. Multigroup diffusion through clever coupling of source terms is
also a possibility.

6.4. Improvements to FLD & Further Variable Eddington Methods. The form of λ used
in FLDSolver is that of Levermore and Pomraning 1981, but other forms are possible, such as
the Minerbo solution. These alternate equations have the same limiting behavior but different
thick-thin transitions, motivated by different physics. Though these variations tend to have only a
small effect on the physical behavior of a problem, the right choice of λ can affect the numerical
stability of a simulation and it would be possible to implement the choice of flux-limiter form as
an input parameter. Flux-limited diffusion is also not the only variable Eddington method. More
complex physics can be implemented by, for example, solving a full transport equation along certain
directions with fixed temperature in order to probe the variation in f , then feeding this information
back into the diffusion solve.

6.5. Optimization and Parallelization. Domain decomposition is a clear next step in having
ExaFlag live up to its name. As far as DiffusionFC is concerned, this would speed up stencil
traversal and matrix assembly as well as facilitating the use of a highly parallel linear solver.

16 THE VEX RADIATION MODULE

Finding a way to vectorize operations on mesh elements not contiguous in memory (by playing
clever tricks with the compiler, for instance) could also further accelerate the stencil traversal and
matrix assembly steps of the diffusion solve.

6.6. Linear Solver. As HYPRE appears not to work well with the face-centered mimetic method,
it seems that a parallel preconditioned conjugate gradient solver is the best bet for speeding up the
linear solve process.

6.7. Mesh Refinement. As of now, ExaFlag imports mesh data from text files generated in
FLAG. This does not easily allow for adaptive mesh refinement. This could be implemented by
modifying the connectivity structures in DelfiMesh, possibly with the use of a compact hash
algorithm for rebuilding connectivity.

6.8. Improvements to the Mimetic Method. The mimetic method used in DiffusionFC is
a basic one designed for quad meshes, which is a good starting point for the implementation of
more advanced features. Though DiffusionFC does not support tensorial diffusion coefficients (K
is assumed to be of the form kI), it would not be difficult to implement them as described in
Hyman et al. 1997. Even more recent methods give good convergence for arbitrary polyhedral
meshes (Brezzi et al. 2005), and even allow for meshes with curved faces (Brezzi et al. 2007).

DiffusionFC has room for additional bells and whistles unrelated to the method itself. For
example, additional options could allow for higher order predictor-corrector timestepping. This
would require multiple matrix solves per cycle as well as storage for intermediate solutions.

7. Conclusions

We have implemented a 2D grey flux-limited diffusion radiation module for the ExaFlag testbed
that uses a mimetic diffusion solver to advance the radiation energy, verifying the qualitatively
correct behavior of this code in the diffusion approximation.

8. Acknowledgements

We acknowledge Misha Shaskov for help with the diffusion solver, Markus Berndt for help with
Hypre, Matt Bement for providing test meshes, and Scott Runnels for organizing the workshop.
We thank Rob Lowrie, Nathaniel Morgan and Scott Runnels for useful discussions on cell-centered
hydro. We also thank Hot Rocks Cafe and the Morning Glory Baking Co. for valuable support
in the form of coffee and breakfast burritos. Los Alamos National Laboratory is operated by
Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S.
Department of Energy under contract DE-AC52-06NA25396

References

Franco Brezzi, Konstantin Lipnikov, and Valeria Simoncini. A family of mimetic finite difference
methods on polygonal and polyhedral meshes. Mathematical Methods and Methods in Applied
Sciences, 15(10):1533–1551, 2005.

Franco Brezzi, Konstantin Lipnikov, Mikhail Shashkov, and Valeria Simoncini. A
new discretization methodology for diffusion problems on generalized polyhedral meshes.
Computer Methods in Applied Mechanics and Engineering, 196(3740):3682 – 3692,
2007. ISSN 0045-7825. doi: http://dx.doi.org/10.1016/j.cma.2006.10.028. URL
http://www.sciencedirect.com/science/article/pii/S0045782507000965. Special Issue
Honoring the 80th Birthday of Professor Ivo Babu.

J. R. Buchler. Radiation transfer in the fluid frame. Journal of Quantitative Spectroscopy and
Radiative Transfer, 30:395–407, November 1983. doi: 10.1016/0022-4073(83)90102-4.

THE VEX RADIATION MODULE 17

D. E. Burton. Connectivity structures and differencing techniques for staggered-grid free-Lagrange
hydrodynamics. In H. J. Shih, W. Schiesser, and J. Ellison, editors, Presented at the 7th Interna-
tional Association of Mathematics and Computer Simulation (IMACS) International Conference
on Computer Methods for Partial Differential Equations, New Brunswick, NJ, 22-24 Jun. 1992,
volume UCRL-JC-110555, pages 22–24, June 1992.

J.I. Castor. Radiation Hydrodynamics. Cambridge University Press, 2004. ISBN 9780521540629.
URL http://books.google.com/books?id=J48PULzdgSgC.

James Hyman, Mikhail Shashkov, and Stanly Steinberg. The numerical solution of diffu-
sion problems in strongly heterogeneous non-isotropic materials. Journal of Computational
Physics, 132(1):130–148, March 1997. ISSN 0021-9991. doi: 10.1006/jcph.1996.5633. URL
http://dx.doi.org/10.1006/jcph.1996.5633.

C. D. Levermore. Relating Eddington factors to flux limiters. Journal of Quantitative Spectroscopy
and Radiative Transfer, 31:149–160, February 1984. doi: 10.1016/0022-4073(84)90112-2.

C. D. Levermore and G. C. Pomraning. A flux-limited diffusion theory. Astrophysical Journal, 248:
321–334, August 1981. doi: 10.1086/159157.

James Morel. Lagrangian solution of the radiation-hydrodynamics equations with grey radiation
diffusion. Unpublished lecture notes.

Mikhail Shashkov and Stanly Steinberg. Solving diffusion equations with rough co-
efficients in rough grids. Journal of Computational Physics, 129(2):383 – 405,
1996. ISSN 0021-9991. doi: http://dx.doi.org/10.1006/jcph.1996.0257. URL
http://www.sciencedirect.com/science/article/pii/S0021999196902570.

Jonathan R Shewchuk. An introduction to the conjugate gradient method without the agonizing
pain. Technical report, Pittsburgh, PA, USA, 1994.

N. J. Turner and J. M. Stone. A Module for Radiation Hydrodynamic Calculations with ZEUS-2D
Using Flux-limited Diffusion. The Astrophysical Journal Supplement Series, 135:95–107, July
2001. doi: 10.1086/321779.

W. Zhang, L. Howell, A. Almgren, A. Burrows, and J. Bell. CASTRO: A New Compressible
Astrophysical Solver. II. Gray Radiation Hydrodynamics. The Astrophysical Journal Supplement
Series, 196:20, October 2011. doi: 10.1088/0067-0049/196/2/20.

2013 Computational Physics Student Summer Workshop: Final Reports

Verification Problems for xRAGE
Radiative Hydrodynamics Code

(Scott Ramsey, mentor)

Verification Problems for xRAGE Radiative Hydrodynamics Code

Elizabeth Hanson, Joseph Redford

Abstract

A new analytical solution was derived for the radiative hydrodynamics equations of a gamma law
ideal gas given in [1]. These solutions were derived assuming the velocity distribution is of the form

u(r, t) =
ηr

t
(1)

where η is a constant. In addition, the radiation flux was assumed to be non-divergent.
The analytic solution along with several cases of Coggeshall solution 9 from [1] were then imple-

mented as test cases in the xRAGE radiative hydrodynamics code developed at Los Alamos National
Laboratory. By comparing the results of the xRAGE numerical solver with the discretized versions
of the analytical solution, we were able to verify the accuracy of specific xRAGE modules.

1 Introduction

Numerical analysis is useful in physics since most real world problems are too complex to admit
analytical solutions. This is often the case is in fluid dynamics, and one code for handling numerical
radiative hydrodynamics problems is xRAGE. xRAGE is a radiative hydrodynamics solver that
was developed at Los Alamos National Laboratory (LANL) and is used for a variety of simulation
purposes including modelling stellar interiors and asteroid destruction [2]. In order to ensure that
xRAGE produces physically meaningful results, it must be subjected to extensive code verification
tests. A simple way of doing this is to model systems with analytical solutions in xRAGE and then
compare the output to the analytical solution.

We sought analytical solutions to a set of radiative hydrodynamics equations for an ideal gas
published by S. Coggeshall along with 22 analytical solutions in [1]. We used the ninth of the
published solutions along with a new one in our verification of xRAGE.

2 Theory and Background

From the general equations of radiative hydrodynamics, as found in [3], S. Coggeshall([1]) used the
assumptions of

P ≈ Pfluid

prad ≈ 0

E ≈ Efluid

where P is the pressure, p is the momentum, and E is the internal energy density. The subscript
fluid signifies that the quantity is specific to the fluid and rad means it is specific to the radiation.
The solutions are assumed to exhibit symmetry such that only one dimension need be considered: [1]

1

solved the equations for Cartesian, cylindrical, and spherical geometries. Using these assumptions,
equations (2), (3), and (4) were obtained. For details of the derivation, please refer to Appendix A.

0 = ρt + uρr + ρur +
kρu

r
(2)

0 = ut + uur +
ρr
ρ

ΓT + ΓTr (3)

0 =
Γ

γ − 1
(Tt + uTr) + ΓTur + ΓT

ku

r
+

1

ρ
(Fr +

kF

r
) (4)

where ρ is the density, u is the velocity, T is the temperature, F is the heat flux, and k is a
geometrical constant that is 0 in Cartesian, 1 in cylindrical, and 2 in spherical coordinates. Along
with this, the heat flux was approximated using Fick’s Law of diffusion and blackbody radiation,
which produces

F = −cλ
3
∇aT 4 (5)

where c is the speed of light, a is the radiation constant of blackbody radiation, and λ is the mean
free path of a photon. The mean free path can be approximated as

λ(ρ, T) = λ0ρ
αT β (6)

where λ0, α, and β are constant parameters based on the properties of the fluid. Thus, the overall
heat flux in the 1D geometry is

F = −
(

4

3
cλ0ρ

αaT 3+β

)
∇T (7)

as can be found in [1].
Recognizing that 10 of the 22 solutions in [1] have the form u ∝ r

t (solutions 1, 2, 8, 9, 11, 13,
15, 17, 21, and 22), we began by considering solutions with that velocity distribution.

u =
ηr

t

0 = ρt +
ηr

t
ρr + ρ

η

t
+
kρη

t

= ρt +
ηr

t
ρr +

η(k + 1)

t
ρ

(8)

Now applying a change of variables ρ(r(τ), t(τ)), we observe that

∂ρ

∂τ
=
∂ρ

∂t

∂t

∂τ
+
∂ρ

∂r

∂r

∂τ
(9)

We choose ∂t
∂τ = 1 and ∂r

∂τ = ηr
t , which leads to the following:

∂t

∂τ
= 1

t = τ + c

2

∂r

∂τ
=
ηr

t

=
ηr

τ + c
∂r

r
= η

∂τ

τ + c

ln(r) = ηln(τ + c)− ln(d)

r = d−1(τ + c)η

τ + c = (dr)
1
η

0 = ρt +
ηr

t
ρr +

η(k + 1)

t
ρ

= ρτ +
η(k + 1)

t
ρ

= ρτ +
η(k + 1)

τ + c
ρ

−ρτ =
η(k + 1)

τ + c
ρ

−∂ρ
ρ

=
η(k + 1)∂τ

τ + c

−ln(ρ) = η(k + 1)ln(τ + c) + e

ρ = e(τ + c)−η(k+1)

Here c, d, and e are arbitrary constants of integration. Since τ + c is equal to both t and (dr)
1
η ,

and the equation is linear, the general solution is

ρ(r, t) =
n∑
i=1

Ai(

p∑
j=1

q∑
k=1

s∑
m=1

(
xij(lijkr)

1
η + (1− xij)t)fijkm

(
t

(lijkr)
1
η

))−η(k+1)

(10)

where fijkm is an arbitrary function, n, p, q, s ≥ 1, n, p, q, s ∈ N, and xij ∈ R. It is from here that
our solutions started to differ.

2.1 Solution with α = 0, β = −3

With α = 0, β = −3 the radiation diffusion becomes

F = −4

3
cλ0a∇T = −DTr (11)

where D is a diffusion constant. We looked for solutions with ∇ · F = 0, and found

Fr +
kF

r
= 0

∂
∂r (Frk)

rk
= 0

∂

∂r
(Frk) = 0

Frk = f(t)

F =
f(t)

rk

3

But ∇ · (r−kr̂) is 2kπδ(r) and not 0 for k 6= 0 (which we were primarily interested in), so

F = 0

−DTr = 0

T = f(t)

where f is an arbitrary function. The case of F = f(t)
rk

is considered in Appendix B.

Next we consider a simplified form of the density solution ρ =
j(r
tη

)

tη(k+1) where again j is an
arbitrary function. Substituting these forms for u, ρ, and T in (3), ρ and T were found to be

ρ =
A

tη(k+1)
Exp[−(η2 − η)r2

2ΓBt2η
]

T = Bt2η−2

By using these in equation (4), a restriction on η was found to be

η =
2

2 + (k + 1)(γ − 1)
(12)

So the new solution is

ρ =
A

tη(k+1)
Exp[−(η2 − η)r2

2ΓBt2η
] (13)

T = Bt2η−2 (14)

u =
ηr

t
(15)

η =
2

2 + (k + 1)(γ − 1)
(16)

which we call the linear velocity, isothermal solution. Throughout the rest of the paper this solution
shall be referred to as the isothermal solution for convenience.

2.2 Coggeshall Solution 9

The other solution we derived using our initial assumptions about the velocity distribution and
non-divergent flux is identical to one of the solutions published in Coggeshall’s paper. As described
in the previous section, linear combinations of ρ(r, t) with varying real parameters A, x, l, and
η should be assumed. In the developments to follow, however, we leave off the summations for
simplicity and take a single case. We begin with

ρ(r, t) =
Atηχ(k+1)

(x(lr)
1
η + (1− x)t)η(k+1)(lr)χ(k+1)

(17)

The factor χ is introduced in the exponent to allow an additional level of flexibility. At this point
it is valuable to recall that we are looking for solutions to the flux equation such that F = f(t)

rk
=

−4acλ0
3 ραT 3+βTr. We notice that this expression for flux involves separable variables, and one way

for this to be satisfied is by requiring that both ρ(r, t) and T (r, t) be separable.
In order to obtain a separable equation for the density, we must have x = 0 or x = 1, which

results in the following expressions:

ρ(x = 0) = Atη(χ−1)(k+1)(lr)−χ(k+1)

ρ(x = 1) = Atηχ(k+1)(lr)−(χ+1)(k+1)
(18)

4

From here, we can solve for the temperature by two different methods; the first and most obvious
is to use the momentum conservation equation (4). With the two different density equations above,
we derive a pair of equations for T (r, t):

T (x = 0) =
η − η2

Γ(2− χ(k + 1))

r2

t2
(19)

T (x = 1) =
η − η2

Γ(2− (χ− 1)(k + 1)

r2

t2
(20)

Alternatively, we can choose instead to solve the energy conservation equation (4), observing
that the non-divergent flux falls out of Coggeshall’s original statement:

Γ

γ − 1
(Tt + uTr) + ΓTur + ΓT

ku

r
= 0

This leads to a solution for temperature similar in form to our density equation, but with new
constants B, y, z, and q to replace A, χ, x, and l, respectively:

T (r, t) =
Btηy(k+1)(γ−1)

(z(qr)
1
η + (1− z)t)η(k+1)(γ−1)(qr)y(k+1)(γ−1)

(21)

In order for this equation to be separable, we must likewise impose the requirement that z = 0
or z = 1. The exponents on r and t must be 2 and -2, respectively, which allows us to solve for
some of the newly introduced constants.

T (z = 0) = Btη(y−1)(k+1)(γ−1)(qr)−y(k+1)(γ−1)

T (z = 1) = Btηy(k+1)(γ−1)(qr)−(y+1)(k+1)(γ−1)
(22)

Reconciling our two equations for temperature yields the following additional requirements:

η =
2

2 + (k + 1)(γ − 1){
χ(k + 1) = 2β+k+7

α for x = 0

(χ+ 1)(k + 1) = 2β+k+7
α for x = 1

(23)

Substituting appropriately for χ reduces our density and temperature equations to a single
expression each, and we replace the constant expressions in A and l with ρ0 so as to be compatible
with Coggeshall’s notation. Substitution of the density and temperature expressions gives us the
radiative flux as well. Our full solution, which is the same as Coggeshall’s Solution 9 (often referred
to as Cog09), is given below.

u(r, t) =

(
2

2 + (k + 1)(γ − 1)

)
r

t
(24)

ρ(r, t) = ρ0t
− 2
α

(
α(k+1)−(2β+k+7)

2+(k+1)(γ−1)
)
r−

2β+k+7
α (25)

T (r, t) =

(
2α(k + 1)(γ − 1)

Γ(2 + (k + 1)(γ − 1))2(2α− (2β + k + 7))

)
r2

t2
(26)

F (r, t) =
−8acλ0ρ

α
0

3Γ

(
2α(k + 1)(γ − 1)

(2 + (k + 1)(γ − 1))2(2α− (2β + k + 7))

)4+β

t
2(2β+k+7−α(k+1))

2+(k+1)(γ−1) r−k (27)

The free parameters of this solution are α, β, ρ0, and the geometric factor k. The constant γ is
determined by the properties of the gas.

5

3 Methods

3.1 Discretization

The solutions described in the previous section yield pointwise values, whereas the output from
xRAGE represent data averaged over each cell in the grid. We surmised that we could minimize
the differences between the xRAGE and analytic data by comparing the xRAGE data to cell-
averaged analytic values. We calculated the cell-averaged analytic data by two methods, which we
called the nonconservative and conservative methods.

The nonconservative averaging method is the most straightforward of the two, so we treat that
method first. In this case, the desired data quantities (velocity, density, temperature, and pressure)
are integrated over each cell and then divided by the cell volume. For a generic variable x(r), the
general formula is:

x̄ =

∫ r2
r1
xrkdr∫ r2

r1
rkdr

(28)

where x̄ denotes the average of the quantity x, and the cell spans the distance r1 to r2. This was
used to calculate the spatial average of each quantity (u, ρ, T , and P) in the discretized cells.

The fact that mass, momentum, and energy may not be conserved in the preceding case is
potentially problematic, because xRAGE was specifically designed to obey conservation laws. We
can, however, calculate averages from quantities that are supposed to be conserved, and we begin
by computing the cell’s mass M , volume V , momentum p, and total energy E:

M =

∫ r2

r1

ρr2dr

V =
4

3
π(r3

2 − r3
1)

p =

∫ r2

r1

ρur2dr

E =

∫ r2

r1

(
1

2
ρu2 +

Γ

γ − 1
ρT)r2dr

ū =
p

M

ρ̄ =
M

V

T̄ =
E − p2

2M
Γ
γ−1M

P̄ = Γρ̄T̄

The total energy was derived from Newtonian Mechanics and the equation of state:

E =
Γ

γ − 1
T (29)

Averaged distributions obtained by both of these methods were used for comparison with the
xRAGE data. As will be discussed in more detail later, they yielded L1 norms and convergence
trends so similar that we finally favored the conservative averaging method alone.

6

3.2 Classical Heat Conduction Module

Another important detail to note is the fact that all of our solutions, and all of Coggeshall’s originally
published solutions as well, are derived using an assumption of nondivergent flux. Consequently,
our solutions are all independent of flux, but it was noticed that one of the derived solutions (found
in Appendix C) and many of Coggeshall’s published solutions, including Cog09, are invalid with
the inclusion of heat flux, due to a delta function at the origin. As a result, we were only able to
test xRAGE’s classical heat conduction module with the isothermal solution. The nondivergent
flux assumption means, in practical terms, that we do not expect the solution to change regardless
of whether there is heat flux present in the system. This allows us to switch the classical heat
conduction module on and off in our simulations. Ideally, the output from xRAGE should be the
same in either case.

3.3 Simulation Settings and Chosen Parameters

The xRAGE settings and solution parameters for our investigation were chosen independently,
with the properties of each individual solution in mind. Both the isothermal solution and Cog09,
however, were studied with γ = 5

3 and k = 2, to model a polytropic gas in spherical symmetry.

3.3.1 Isothermal Solution

The xRAGE simulations of the isothermal solution were conducted, unless otherwise noted, in a
domain of radius 10, with only the portion 0 ≤ r < 1.5 being analyzed to prevent the inclusion of
boundary effects, since the boundary effects are not the aim of this work. The constants A and B
were set to 1 for simplicity, and Γ was set to 2

3 so the heat capacity was unity. For the convergence
tests, the cell sizes of 0.1, 0.05, 0.025, and 0.0125 were used. Unless otherwise noted, the solution
was implemented from time t = 1 to t = 1.5 and the error convergence calculated at time t = 1.5.

3.3.2 Coggeshall 9

For Cog09, we had considerable freedom when choosing α and β. We found it most convenient
to select an arbitrary value for α first and then compute the resulting constraints on β. The only
mathematically prohibited value of α was 0; according to [1], physically relevant values of α tend to
fall within the range −2 < α < −1. The value we chose was α = 1.5, evidently an unphysical value,
which we happened to use during testing. We continued to use it for our investigation because we
had developed a sense of the solution behavior for this value.

The constraints on β are both mathematical and physical and are defined by the values of k
and α. In order to prevent division by zero or a negative temperature distribution, the following
must be true: {

β < α− 1
2(k + 7) for α > 0

β > α− 1
2(k + 7) for α < 0

For k = 2 and α = 1.5, this reduces to β < −3. Other variables we can set in Cog09 and the
xRAGE input deck are ρ0, Γ, and the specific heat cv. For the sake of simplicity, we set ρ0 = 1.0,
Γ = γ − 1, and cv = 1.0. Substituting for all parameters except β in Cog09 yields the following

7

system:

u(r, t) =
r

2t

ρ(r, t) = r(− 4
3
β−6)t(

2
3
β+ 3

2
)

T (r, t) =

(
−1

2(β + 3)

)(
3r

4t

)2

P (r, t) =

(
−3

16(β + 3)

)
r(− 4

3
β−4)t(

2
3
β− 1

2
)

S(r, t) =

√
−5

β + 3

(r
4t

)
When the solutions are seen in this form, the constraint on β is much more apparent. We

decided to investigate the solution’s behavior with several β values. Noticing that as β ap-
proaches the limit -3, the exponent on r approaches −2 in the density equation and 0 in the
pressure equation, we decided to select values of β corresponding to integer-value exponents on
r in density and pressure. We also wanted a value close to the limit −3. The set we chose was
β = {−3.1,−3.75,−4.5,−5.25,−6.0}; the latter four values yield exponents of −1, 0, 1, and 2
in the density equation and 1, 2, 3, and 4 in the pressure equation. We also began preliminary
investigations of an additional set of values: β = {−3.6,−3.8,−3.9,−4.0,−4.1,−4.2,−4.4}. This
set was chosen because we observed unexpected oscillations in the xRAGE output distributions for
late simulation times (tsim = 1.0 sec or tsol = 2.0 sec) at β = −4.0 during early test runs. The final
simplified Cog09 equations for each β value are given in Appendix E.

All of the Cog09 variations were processed in xRAGE with the same settings. Simulations
began at tsol = 1.0 sec, saved data at intervals of 0.05 sec, and ran for a total of 1.0 sec. The
time step was fixed at dt = 10−5 sec, and we captured data for analysis at tsol = 1.10001 sec and
tsol = 2.0 sec. The bulk of our analysis was performed on the data captured at 1.10001 sec, but
the later capture time is also important because then the oscillations near β = −4.0 were readily
visible.

The simulations ran on fixed, one-dimensional grids with a minimum radius of 0.0 and a maxi-
mum radius of 9.0. Eight different grid spacing sizes were tried: 0.28 (32 cells), 0.14 (64 cells), 0.1
(90 cells), 0.07 (128 cells), 0.05 (180 cells), 0.04 (256 cells), 0.025 (360 cells), and 0.013 (720 cells).
Distribution data stored in the input decks and the cell-averaged analytic data for comparison
with xRAGE output were double-precision floating-point values, because the xRAGE outputs are
returned in double precision.

It should be briefly noted that all simulations for both solutions were run with a fixed boundary
condition at the outside edge. As a result, some deviations are expected in the data near the
outer boundary, and it is necessary to remove some portion of each distribution, or the “tail.”
The depth to which such disturbances entered the Cog09 distributions varied strongly with β: er-
rors propagated inward faster for β values nearer to the limit −3. Rather than selecting a single
truncation point for all β values by eye, we analyzed the Cog09 data using six truncation points:
rmax = {3.0, 5.0, 7.0, 8.0, 8.5, 9.0}.

3.3.3 General Considerations

Other aspects of data processing were the same for both the Redford solution and Cog09. Once
xRAGE had finished a given simulation, a program called Hyperion was used to extract the following

8

variables in text file form: cell centers, density, specific internal energy, temperature, pressure, and
velocity. Using the cell centers output by xRAGE, we found the conservative cell averages of the
analytic data. Comparing these to the xRAGE output velocity, density, temperature, and pressure,
we calculated L1 norms for each of the grid spacings used. In the case of Cog09 data, we did this
for all different β values and tail truncation values.

Once the L1 norms were calculated for each grid spacing value, we fit them to a power law
equation L1 = Axb, where L1 is the L1 norms data, x is the grid spacing size, and A and b are free
parameters in the fit. In this way we obtained a convergence rate b; for each fit, we also computed
the coefficient of determination R2, which provides a quantitative measure for goodness of fit. We
considered R2 values above 0.9 to be indicative of satisfactory correlation.

4 Results

4.1 The Isothermal Solution

10-2 10-1 100

Grid Spacing(Log)
10-7

10-6

10-5

10-4

10-3

L1
 n

or
m

 e
rr

or
(L

og
)

Reference Line
 of slope 2

Log Error Isothermal Solution No Heat

Temperature
Density
Velocity

10-2 10-1 100

Grid Spacing(Log)
10-6

10-5

10-4

10-3

L1
 n

or
m

 e
rr

or
(L

og
)

Reference Line
 of slope 2

Log Error Isothermal Solution With Heat

Temperature
Density
Velocity

Figure 1: Log-log plot of the grid resolution to error. With and without heat the error exhibits
second order convergence.

An actual plot of the results are shown in Figure 2.
The convergence of the solution was approximately second order and exact values are given in

table 1.
Another feature worth mentioning in the isothermal solution is that there were small oscillations

in the solution that were seen without heat. The cause of these oscillations is currently unknown,
but they can be seen upon close inspection of figure 2 and in figure 3.

4.2 Coggeshall 9

Turning our attention to Cog09, we first consider β = {−3.1,−3.75,−4.5,−5.25,−6.0}. When we
look at the viewgraph norms in Figure 5, plotting the captured xRAGE data with the averaged
analytic data, we find that the plotted lines nearly coincide, as long as we remove the tail of the
distribution near the outer boundary. A comparison of the untruncated data at the later capture
time in Figure 6 clearly shows how the boundary waves travel farther into the distributions with β
closer to −3.

The choice of a truncation point can potentially impact the calculated L1 norms and con-

9

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Radius

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 V

al
ue

s

Isothermal Solution No Heat

Density
Temperature
Velocity

Figure 2: A plot of the xRAGE results without heat normalized so that the maximum value is one
so that they can be conveniently plotted on the same graph.

Table 1: Isothermal Solution Convergence

Convervative Discretization Method
Temperature Velocity Density

No Heat 2.2083 1.9902 2.0289
No Heat R2 0.9885 0.9999 0.9980
Heat 1.9525 1.9979 2.0199
Heat R2 0.9998 0.9999 0.9983

Averaging Discretization Method

Temperature Velocity Density

No Heat 2.1072 1.9893 2.0148
No Heat R2 0.9965 0.9999 0.9995
Heat 1.9605 2.0114 1.9975
Heat R2 0.9999 0.9998 0.9995

vergence rates. Shown in Figure 7 is a plot of the L1 norms for β = −3.1 and with truncation
point rmax = 8.0. A dashed reference line shows the slope of second-order convergence. Roughly
second-order convergence is seen for all quantities except density, which shows roughly first-order
convergence. Plots of the L1 norms for all other β values and most other truncation points are
comparable.

We can plot the fitted convergence rate for our set of possible rmax values against β to study
the convergence trends in parameter space. In Figure 8, different rmax values are plotted as colored
lines, with β as the independent variable and convergence rate as the dependent variable, for each
of the major data quantities of interest. A horizontal reference line lies at a convergence rate of 1.8;
above this point, we consider the convergence rate to be close enough to 2 to be called second-order.
Likewise, the plots of R2 have a reference line at 0.9, above which we consider the fit a good one,
and below which we are less inclined to trust it. We can remark immediately that rmax values of
9.0 (untruncated) and 8.5 give wildly varying values for the convergence rate in most of the plots.
We conclude that for these β values at this capture time, we should truncate the distributions to
rmax = 8.0 at the highest. If we look only at convergence data obtained with rmax = 5.0, as in Fig-
ure 9, we see that for all data quantities and β values except density at β = −3.1, the convergence

10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Radius

�0.010

�0.005

0.000

0.005

0.010

0.015

0.020

Te
m

pe
ra

tu
re

 E
rr

or

Time Evolution of Isothermal Solution

1.00
1.10
1.20
1.30
1.40

Figure 3: A plot of the error of the xRAGE results from the discretized analytical solution for
several times. The starting time was 1. Note that the oscillations are steadily growing with time
and spreading but the left side stays at approximately the same position.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Radius

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

Comparison of Density With Heat

Analytic
xRAGE

Figure 4: A plot of the analytical solution and xRAGE output on the same graph for easy com-
parison. Note that the analytical solution is mostly covered by the xRAGE line.

rates are second-order or perhaps a little better. Density at β = −3.1 shows first-order convergence
at best for all rmax values. Thus, with an appropriate choice of rmax, we observe second-order
convergence for nearly all the data quantities with our main group of β values.

If we look at the later capture time tsol = 2.0 sec, we find unexpected oscillations in the data
for β values near −4.0. Figure 10 shows an example: the xRAGE data without heat is plotted with
the conservatively averaged analytic data for β = −4.1 on a grid with 360 cells. The xRAGE data
clearly deviate from the averaged analytic data; what is also interesting is the fact that we do not
see similar deviations in the plots for β < −4.5 or for β > −3.75. Additional, longer simulation
times would need to be run to check whether the range of affected β values increases with simulation
length. The oscillations at capture time tsol = 2.0 sec seem to peak in amplitude around β = −4.1
or β = −4.2.

The amplitude of the oscillations is also affected by the number of cells in the grid, and the
impact of the oscillations on the L1 norm data is striking. Figure 11 shows the L1 norms versus

11

Figure 5: xRAGE distributions compared to conservatively-averaged analytic data at solution time
tsol = 1.10001 sec. Dashed lines indicate the initial distributions.

grid spacing size for β = −4.1; notice that although the data appear to show second-order conver-
gence for the largest cell sizes, after 64 cells the convergence rate begins decreasing rapidly until it
reaches another peak. As a result, attempting to fit a power law equation to the L1 norms versus
grid spacing in this region is not helpful. The cause of this oscillatory behavior remains unclear.

5 Conclusions

We find in general that both the isothermal solution and Cog09 exhibit the expected second-order
convergence when xRAGE is run without the heat module. Because of the delta function at the
origin in Cog09 when flux is included, we are only able to report on the convergence of xRAGE
data with the heat module on for the isothermal solution.

12

Figure 6: xRAGE distributions compared to conservatively-averaged analytic data at solution time
tsol = 2.0 sec. Notice that the disturbance from the outer boundary has propagated farther inward
for β = −3.10 than for β = −3.75.

5.1 Isothermal Solution

The isothermal solution exhibits second order convergence both with and without the heat module.
Like Coggeshall 9, it has oscillatory behavior that is currently unexplained. This has been proposed
to be a boundary effect [7], but this does seem unusual as it seems to stay fairly stationary, unless
this is a standing wave phenomenon.

This test problem has the expected second order convergence with the heat module, but more
heat module tests should be used. As will be shown in Appendix C, several past verification
efforts including the test problem in [4] and the Coggeshall 9 test problems in [5] are incorrect.
Additionally, the isothermal solution exhibits spatially constant temperature, which along with
α = 0 and β = −3 should be the simplest case possible for the heat conduction module. So it
would be helpful to use more tests on the heat module.

13

Figure 7: L1 norms plotted against grid spacing size for β = −3.10 at solution time tsol = 1.10001
sec.

Figure 8: Convergence and R2 plotted against β for temperature. Each color represents a different
value of the truncation point rmax.

5.2 Coggeshall 9

For Cog09, we observed no significant difference in convergence trends whether we used conserva-
tively or nonconservatively averaged analytic data for comparison with xRAGE. The trends also

14

Figure 9: Convergence and R2 plotted against β for rmax = 5.0. Each color represents a different
data quantity: velocity, density, temperature, or pressure.

Figure 10: xRAGE distributions plotted with conservatively-averaged analytic solutions for β =
−4.10 at solution time tsol = 2.0 sec. Oscillations appear most clearly in velocity and pressure but
can also be seen in density and temperature.

remained the same when we compared xRAGE to the pointwise analytic data. As we stated briefly
above, second-order convergence with strong correlation was observed for β = {−3.1,−3.75,−4.5,−5.25,−6.0}

15

Figure 11: xRAGE distributions plotted with conservatively-averaged analytic solutions for β =
−4.10 at solution time tsol = 2.0 sec. Oscillations appear most clearly in velocity and pressure but
can also be seen in density and temperature.

for all variables except the density at β = −3.1. The choice of a truncation point had some impact
on the observed convergence, due to boundary errors propagating inward at the sound speed, which
is higher for β values nearer the limit −3. In general, we found for this β group that an rmax value
of 8.0 or lower gave the best results at the capture time tsol = 1.10001sec.

The fact that the sound speed varies with β means that problems with β closer to −3 are in-
herently more challenging to solve by numerical methods. On the other hand, at later data capture
times we observed unexplained oscillations in the xRAGE output distributions when β is near −4.0.
At present we can imagine two possible causes or contributing factors:

1.) The oscillations are the result of some special combination of position exponent values in
the density and pressure equations. This could then be traced back to some particular relationship
between α, β, γ, and k.

2.) The oscillations are standing waves that arise from a lucky combination of the sound speed,
grid size, and number of cells.

Different strategies would be needed to probe each possible explanation. In the first case, we
would need to select different values of α and/or k and seek the β values that produce similar
oscillations in the output data. With enough sets of α, k, and β where such behavior is observed,
we could begin to characterize the mathematical relationship that defines when oscillatory behavior
arises.

Alternatively, to test the second theory, we should vary β, the grid dimensions, and the grid
spacing sizes. It might also help to vary the position of the grid, since sound speed depends not
only on β but also on position. Here again the goal would be to understand the ways of combining

16

β, grid size and position, and grid spacing such that oscillations arise in the output distributions
from xRAGE.

One detail remains to be mentioned for our work with Cog09. In the course of our investigation
we observed that the results are very sensitive to the precision of the comparisons; for example,
when calculating averages of the analytic data for comparison with the xRAGE outputs, the av-
eraging program was initially fed the boundaries of the grid and the number of cells, whence it
calculated the cell centers and boundaries itself. As a test, we tried feeding it the cell centers
extracted directly from xRAGE instead and made it compute the cell boundaries as the averages
of adjacent cell centers. This subtle alteration improved the observed L1 norms and convergence
rates. If we opt to continue comparing the xRAGE data to cell-averages of the analytic data,
we may see a similar improvement if we can extract the cell boundaries directly from xRAGE,
thus sidestepping the necessity of recalculating cell boundaries in the averaging program. At the
moment, the Hyperion program does not have an option for extracting the cell boundary data.

6 Acknowledgements

This work was performed under the auspices of the United States Department of Energy by Los
Alamos National Security, LLC, at Los Alamos National Laboratory under contract DE-AC52-
06NA25396. The authors acknowledge the support of the US Department of Energy Advanced
Strategic Computing Program Computational Physics Student Summer Workshop under University
Liaison S. Runnels, and the US Department of Energy Advanced Strategic Computing Program
Verification Project under project leader S. Doebling. The authors thank S. Ramsey for valuable
insights on these topics, T. Jenkins for technical support, and the University of New Mexico-Los
Alamos for use of their facilities.

Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the
National Nuclear Security Administration of the U.S. Department of Energy under contract DE-
AC52-06NA25396.

References

[1] Coggeshall, S., 1991., Analytic solutions of hydrodynamics equations. Physics of Fluids A, 3,
757-769.

[2] M. Gittings, et al., ”The RAGE radiation-hydrodynamics code,” Computational Science &
Discovery 1, 015005-015005 (2008).

[3] Pomraning, G. C., The Equations of Radiation Hydrodynamics. Dover Publications: Mineola,
NY. 2002.

[4] Hendon, R. and Ramsey, S., Radiation Hydrodynamics Test Problems with Linear Velocity
Profiles, Los Alamos National Laboratory, 2012.

[5] Marcath, M. and Wang, M., Development and Implementation of Radiation-Hydrodynamics
Verification Test Problems, Los Alamos National Laboratory, 2012.

[6] S. Ramsey, personal communication, August 2013.

[7] T. Masser, personal communication, August 2013.

17

Appendix

A Derivation of Coggeshall’s Radiative Hydrodynamics Equations

We began with

∂ρ

∂t
+∇ · (ρu) = 0

∂

∂t
(ρu +

1

c2
F) +∇Pm +∇ · (ρuu + Prad) = 0

∂

∂t
(
1

2
ρu2 + Em + Erad) +∇ · [(1

2
ρu2 + Em + Pm)u + F] = 0

(30)

from equations 9.82 to 9.84 of [3]. In these equations, F is the heat flux of the radiation, Em is
the material’s internal energy density, Erad is the energy density of the radiation, Prad is radiation
pressure, Pm is pressure of the material, u is the fluid velocity, and ρ is the fluid density. With
Coggeshall’s first assumption of a one-dimensional geometry we could simplify the gradients as
shown:

∇f =
∂f

∂x
x̂ +

∂f

∂y
ŷ +

∂f

∂z
ẑ =

∂f

∂x
x̂ in Cartesian

=
∂f

∂ρ
ρ̂+

1

ρ

∂f

∂φ
φ̂+

∂f

∂z
ẑ =

∂f

∂ρ
ρ̂ in Cylindrical

=
∂f

∂r
r̂ +

1

r

∂f

∂θ
θ̂ +

1

rsinθ

∂f

∂φ
φ̂ =

∂f

∂r
r̂ in Spherical

We used r for the spatial coordinate, so for all geometries considered ∇f = ∂f
∂r . Similarly, for the

divergence

∇ · f =
∂fx
∂x

+
∂fy
∂y

+
∂fz
∂z

=
∂fx
∂x

=
∂f

∂x
in Cartesian

=
1

ρ

∂(ρfρ)

∂ρ
+

1

ρ

∂fφ
∂φ

+
∂fz
∂z

=
1

ρ

∂(ρfρ)

∂ρ

=
1

ρ
(fρ + ρ

∂fρ
∂ρ

) =
∂fρ
∂ρ

+
fρ
ρ

=
∂f

∂ρ
+
f

ρ
in Cylindrical

=
1

r2

∂(r2fr)

∂r
+

1

rsinθ

∂fθsinθ

∂θ
+

1

rsinθ

∂fφ
∂φ

=
1

r2

∂r2fr
∂r

=
1

r2
(r2∂fr

∂r
+ 2rfr) =

∂fr
∂r

+
2fr
r

=
∂f

∂r
+

2f

r
in Spherical

This can be summarized as ∇ · f = ∂f
∂r + kf

r where k is a geometrical factor that is 0 in Cartesian,
1 in cylindrical, and 2 in spherical coordinates. Starting with the first equation in (30), we found

0 =
∂ρ

∂t
+∇ · (ρu)

=
∂ρ

∂t
+
∂(ρu)

∂r
+
kρu

r

=
∂ρ

∂t
+ u

∂ρ

∂r
+ ρ

∂u

∂r
+
kρu

r

= ρt + uρr + ρur +
kρu

r
using subscript notation

18

which is equation (1a) in [1]. The second equation became

0 =
∂

∂t
(ρu +

1

c2
F) +∇Pm +∇ · (ρuu + Prad)

=
∂

∂t
(ρu) +∇P +∇ · (ρuu)

using the approximation that the pressure and momentum of the fluid is much greater than that
of the radiation. Then we eliminated P by using the ideal gas equation of state

P = ΓρT (31)

where Γ is the gas constant and T is the temperature.

0 =
∂

∂t
(ρu) +∇(ΓρT) +∇ · (ρuu)

= ρtu+ ρut + ΓρrT + ΓρTr +
∂

∂r
(ρu2) +

kρu2

r

= ρtu+
kρu2

r
+ ρut + ΓρrT + ΓρTr + 2uurρ+ ρru

2

= u(ρt + ρur + uρr +
kρu

r
) + ρut + ρuur + ΓρrT + ΓρTr

= u(0) + ρut + ρuur + ΓρrT + ΓρTr

= ut + uur + ΓρrT + ΓρTr

which is equation (1b) of [1]. Finally, we went to the third equation of (30),

0 =
∂

∂t
(
1

2
ρu2 + Em + Erad) +∇ · [(1

2
ρu2 + Em + Pm)u + F]

=
∂

∂t
(
1

2
ρu2 + E) +∇ · [(1

2
ρu2 + E + P)u + F]

where we have assumed that the internal energy of the fluid is much greater than the radiation
energy. Then we substituted (31) for P as before. The internal energy equation for an gamma law
ideal gas provided us with an expression for the internal energy density E.

E =
Γ

γ − 1
ρT (32)

19

where γ is the adiabatic index.

0 =
∂

∂t
(
1

2
ρu2 +

Γ

γ − 1
ρT) +

∂

∂r
((

1

2
ρu2 +

Γ

γ − 1
ρT + ΓρT)u) +

(1
2ρu

2 + Γ
γ−1ρT + ΓρT)ku

r
+
∂F

∂r
+
kF

r

= ρuut +
1

2
u2ρt +

Γ

γ − 1
ρtT +

Γ

γ − 1
ρTt +

1

2
ρru

3 +
3

2
u2urρ+

Γ

γ − 1
ρruT +

Γ

γ − 1
ρTru+ ΓρTru+ ΓρrTu

+ (
Γ

γ − 1
ρT + ΓρT)ur +

(1
2ρu

2 + Γ
γ−1ρT + ΓρT)ku

r
+ Fr +

kF

r

=
1

2
u2(ρt + uρr + urρ+

kρu

r
) + ρu(ut + uur +

1

ρ
ΓTρr + ΓTr) +

Γ

γ − 1
T (ρt + uρr + ρur +

kρu

r
)

+
Γ

γ − 1
(ρTt + ρTru) + ΓρurT + ΓT

ku

r
+ Fr +

kF

r

=
1

2
u2(0) + ρu(0) +

Γ

γ − 1
T (0) +

Γ

γ − 1
(ρTt + ρTru) + ΓρurT + ΓT

kρu

r
+ Fr +

kF

r

=
Γρ

γ − 1
(Tt + uTr) + ρΓTur + ΓTρ

ku

r
+
ρ

ρ
(Fr +

kF

r
)

=
Γ

γ − 1
(Tt + uTr) + ΓTur + ΓT

ku

r
+

1

ρ
(Fr +

kF

r
)

which is equation (1c) of [1].

B Full Derivation of Solutions

We began with

T = g(t)

ρ =
h(rtη)

tη(k+1)

T = g(t)

0 = ut + uur +
ρr
ρ

ΓT + ΓTr

0 =
(η2 − η)r

t2
+
ρr
ρ

Γg(t)

ρr
ρ

= −(η2 − η)r

Γg(t)t2

ln(ρ) = −(η2 − η)r2

2Γg(t)t2
+ h(t)

ρ = eh(t)Exp[−(η2 − η)r2

2Γg(t)t2
]

20

For this to have the form ρ =
j(r
tη

)

tη(k+1) , we required

eh(t) = At−η(k+1)

r2

g(t)t2
∝ r2

t2η

g(t)t2 ∝ t2η

g(t) = Bt2η−2

ρ =
A

tη(k+1)
Exp[−(η2 − η)r2

2ΓBt2η
]

T = Bt2η−2

We then returned to equation (4)

0 =
Γ

γ − 1
(Tt + uTr) + ΓTur + ΓT

ku

r

0 = Tt + uTr + (γ − 1)(ur +
ku

r
)T

0 = (2η − 2)Bt2η−3 + 0 + (γ − 1)
(k + 1)η

t
Bt2η−2

0 = (2η − 2) + (γ − 1)(k + 1)η

2 = 2η + (γ − 1)(k + 1)η

2 = η(2 + (γ − 1)(k + 1))

η =
2

2 + (γ − 1)(k + 1)

So the isothermal solution is

ρ =
A

tη(k+1)
Exp[−(η2 − η)r2

2ΓBt2η
]

T = Bt2η−2

u =
ηr

t

η =
2

2 + (γ − 1)(k + 1)

A second solution was derived, but was later found to be valid only in the case of k = 0, as discussed
in the next section. Starting from

T =
f(t)

rk−1
+ g(t)

ρ =
h(rtη)

tη(k+1)

21

And then setting g(t) = 0

0 = ut + uur +
1

ρ
ΓTρr + ΓTr

= −ηr
t2

+
η2r

t2
+

1

ρ
Γ
f(t)

rk−1
ρr + Γ(1− k)

f(t)

rk+1

ρr
ρ

(
f(t)

rk−1
) + (1− k)

f(t)

rk
= −(η2 − η)r

Γt2

ρr
ρ

=
(k − 1)

r
− (η2 − η)rk

Γf(t)t2

ln(ρ) = ln(rk−1)− 1

k + 1

(η2 − η)rk+1

f(t)Γt2
+ h(t)

ρ = rk−1eh(t)Exp[− (η2 − η)rk+1

f(t)(k + 1)Γt2
]

From here we assumed k 6= 1. To be of the form ρ =
j(r
tη

)

tη(k+1) where j(t) is an arbitrary function of

t, then eh(t) = Bt2ηk and

rk+1

f(t)t2
∝ (

r

tη
)k+1

f(t)t2 ∝ tη(k+1)

f(t) ∝ tη(k+1)−2

f(t) = Atη(k+1)−2

ρ = B
rk−1

t2ηk
Exp[− (η2 − η)rk+1

A(k + 1)Γtη(k+1)
]

T = A
tη(k+1)−2

rk−1

22

We now applied this to equation (4)

0 =
Γ

γ − 1
(Tt + uTr) + ΓTur + ΓT

ku

r

0 = Tt +
ηr

t
Tr +

(k + 1)η(γ − 1)

t
T

Tt = (η(k + 1)− 2)A
tη(k+1)−3

rk−1

Tr = (1− k)A
tη(k+1)−2

rk

0 = (η(k + 1)− 2)A
tη(k+1)−3

rk−1
+
ηr

t
(1− k)A

tη(k+1)−2

rk
+

(k + 1)η(γ − 1)

t
A
tη(k+1)−2

rk−1

0 = η(k + 1)− 2 + η(1− k) + (k + 1)η(γ − 1)

2

η
= k + 1 + 1− k + (k + 1)(γ − 1)

η =
2

2 + (k + 1)(γ − 1)

So the first solution is

ρ = B
rk−1

t2ηk
Exp[− (η2 − η)rk+1

A(k + 1)Γtη(k+1)
]

T = A
tη(k+1)−2

rk−1

u =
ηr

t

η =
2

2 + (k + 1)(γ − 1)

C Of Coggeshall and Origins

During the testing of the second new ”solution”

ρ = B
rk−1

t2ηk
Exp[− (η2 − η)rk+1

A(k + 1)Γtη(k+1)
]

T = A
tη(k+1)−2

rk−1

u =
ηr

t

η =
2

2 + (γ − 1)(k + 1)

k 6= 1

(33)

It was observed that the equation (4) was not satisfied at the origin. It was derived so that the
heat flux term in (4) was zero with α = 0 and β = −3. But if attention is paid to the flux term, it
will be noticed that it is, in fact ∇·F . With α = 0 and β = −3 then the flux is F ∝ ∇T . Therefore

23

the flux term becomes ∆T , which means that for k = 2(spherical geometry)

∆T = ∆(A
tη3−2

r
)

= Atη3−2∆(
1

r
) (34)

= Atη3−24πδ(r)

6= 0

So the solution will fail at the origin. When this was implemented in xRAGE the results deviated
from the analytical solution at the origin. To illustrate this, some graphs of the analytical solution
and xRAGE output is shown in figure 12.

It can be qualitatively seen that with heat conduction the solution cools at the origin which causes

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Radius

0

10

20

30

40

50

60

70

80

90

Te
m

pe
ra

tu
re

Comparison of Temperature With Heat
Analytic
xRAGE

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Radius

0

10

20

30

40

50

60

70

80

90

Te
m

pe
ra

tu
re

Comparison of Temperature Without Heat
Analytic
xRAGE

Figure 12: Left is the plot of xRAGE output for heat conduction(left) and no heat conduction(right),
plotted on the same axes as the analytical solution. Note that (33) is a valid solution only when
the heat conduction term is ignored(no heat conduction).

a decrease in pressure and material collapses into the origin. After realizing that the solution fails
at the origin as shown in (34), it was decided to investigate the same problem with Coggeshall’s
solutions. First looking at the divergence of r−kr̂ using the divergence theorem∮ ∮ ∮

∇ · (r−kr̂)dV =

∮ ∮
r−kr̂ · dS

Integrating over a sphere(k = 2)/cylinder(k = 1)/cube(k = 0) of radius/side length R∮ ∮ ∮ R

0
∇ · (r−kr̂)dV = CR−kRk

where C = 0 for k = 0, C = 2πz for k = 1, and C = 4π for k = 2∮ ∮ ∮ R

0
∇ · (r−kr̂)dV = C

(35)

which is independent of the radius. Therefore

lim
R→0

∮ ∮ ∮ R

0
∇ · (r−kr̂)dV = C (36)

24

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Radius

0

1

2

3

4

5

6

7

8

9
D

en
si

ty
Comparison of Density With Heat

Analytic
xRAGE

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Radius

0

1

2

3

4

5

6

7

8

9

D
en

si
ty

Comparison of Density Without Heat
Analytic
xRAGE

Figure 13: Similar to figure 12, this figure shows density compared between xRAGE with heat
conduction(left) and without heat conduction(right). The analytical solution is plotted on both
graphs for comparison.

And ∮ ∮ ∮ R2

R1

∇ · (r−kr̂)dV =

∮ ∮ ∮ R2

0
∇ · (r−kr̂)dV −

∮ ∮ ∮ R1

0
∇ · (r−kr̂)dV

= C − C
= 0

(37)

So the volume is C if the region contains the origin and zero otherwise. So also taking into account
the values of C

∇ · (r−kr̂) = 2kπδ(r) (38)

Now going back to the derivation of (2), It will be noted that (2) is just the simplified form of

ρt +∇ · (ρu) = 0

which means that from the previous equations if ρu is proportional to r−k there will be a delta func-
tion in non-Cartesian geometries. Looking over Coggeshall’s solutions there are several solutions
with this form.(Note, that unless explicitly forbidden the solutions are still valid for k = 0)

Coggeshall 4 and 12

ρ = ρ0r
−2k/(γ+1)

(u) = u0r
−k(γ−1)/(γ−1)r̂

ρt +∇ · (ρu) = 0

= 0 +∇ · (ρ0r
−2k/(γ+1)u0r

−k(γ−1)/(γ−1)r̂)

= ∇ · (ρ0u0r
−k(γ+1)/(γ+1)r̂)

= ρ0u0∇ · (r−kr̂)
= ρ0u0k2πδ(r) 6= 0

25

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Radius

�0.2

0.0

0.2

0.4

0.6

0.8

1.0
Ve

lo
ci

ty
Comparison of Velocity With Heat

Analytic
xRAGE

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Radius

0.0

0.2

0.4

0.6

0.8

1.0

Ve
lo

ci
ty

Comparison of Velocity Without Heat

Analytic
xRAGE

Figure 14: Similar to figures 12 and 13, this figure shows velocity compared between xRAGE with
heat conduction(left) and without heat conduction(right). The analytical solution is plotted on
both graphs for comparison.

Coggeshall 5

k = 2 the only allowed k value for this solution

ρ = ρ0r
−2

u = u0tr̂

ρt +∇ · (ρu) = 0 +∇ · (ρ0r
−2u0tr̂)

= u0ρ0∇ · (r−2r̂)

= u0ρ0(4πδ(r)) 6= 0

Coggeshall 10

ρ = ρ0r
−k

u = (4cλ0a/3)[(γ − 1)/(Γγ)]kρα−1
0 T β+3

0 r̂

ρt +∇ · (ρu) = 0 +∇ · (ρ0r
−k(4cλ0a/3)[(γ − 1)/(Γγ)]kρα−1

0 T β+3
0 r̂)

= (4cλ0a/3)[(γ − 1)/(Γγ)]kρα−1
0 T β+3

0 ρ0∇ · (r−kr̂)

= (4cλ0a/3)[(γ − 1)/(Γγ)]kρα−1
0 T β+3

0 ρ0(k2πδ(r)) 6= 0

26

Coggeshall 14

ρ = ρ0r
−k−b

u = rb
√

ΓT0(k − b)/br̂

ρt +∇ · (ρu) = 0 +∇ · (ρ0r
−k−brb

√
ΓT0(k − b)/br̂)

= ρ0

√
ΓT0(k − b)/b∇ · (r−kr̂)

= ρ0

√
ΓT0(k − b)/b(k2πδ(r)) 6= 0

Coggeshall 16

ρ = ρ0r
−k−b

u = u0r
br̂

ρt +∇ · (ρu) = 0 +∇ · (ρ0r
−k−bu0r

br̂)

= ρ0u0∇ · (r−kr̂)
= ρ0u0(k2πδ(r)) 6= 0

Coggeshall 22

Coggeshall 22 has two regions and a shock, but the region that contains the origin has ρ and u
identical to Coggeshall 4 and 12.

Now looking at the Conservation of Energy equation (equation (4)), the heat flux term takes
the form of

∇ · F = ∇ · (−4acλ0

3
ραT β+3)∇T (39)

Now looking at several particular equations

27

Coggeshall 8

ρ = ρ0r
k−1

β−α+4 t
−k−1− k−1

β−α+4

T = T0r
1−k

β−α+4 t
(1−γ)(k+1)+ k−1

β−α+4

∇T = T0
1− k

β − α+ 4
r

1−k−β+α−4
β−α+4 t

(1−γ)(k+1)+ k−1
β−α+4 r̂

−4acλ0

3
ραT β+3∇T = −4acλ0

3
ρα0 r

α(k−1)
β−α+4 t

α(−k−1− k−1
β−α+4

)
T β+4

0 t
(β+4)((1−γ)(k+1)+ k−1

β−α+4
)
r

(β+3)(1−k
β−α+4

)
r

1−k−β+α−4
β−α+4 r̂

= −4acλ0

3
ρα0T

β+4
0 r

α(k−1)+(β+4)(1−k)−β+α−4
β−α+4 t

(β−α+4)(k+1)−γ(β+4)(k+1)+
(β−α+4)(k−1)

β−α+4 r̂

= −4acλ0

3
ρα0T

β+4
0 r(1−k)−1t(β−α+4)(k+1)−γ(β+4)(k+1)+(k−1)r̂

= −4acλ0

3
ρα0T

β+4
0 r−kt(β−α+4)(k+1)−γ(β+4)(k+1)+(k−1)r̂

So

∇ · F = ∇ · (−4acλ0

3
ρα0T

β+4
0 r−kt(β−α+4)(k+1)−γ(β+4)(k+1)+(k−1)r̂)

= −4acλ0

3
ρα0T

β+4
0 t(β−α+4)(k+1)−γ(β+4)(k+1)+(k−1)∇ · (r−kr̂)

= −4acλ0

3
ρα0T

β+4
0 t(β−α+4)(k+1)−γ(β+4)(k+1)+(k−1)(2kπδ(r))

The next section of the appendix will cover specific parameter values that will work.

Coggeshall 9

ρ = ρ0r
− 2β+k+7

α t
−α(k+1)−2β−k−7
α[2+(γ−1)(k+1)]

T =
2α(γ − 1)(k + 1)

Γ[2 + (γ − 1)(k + 1)]2(2α− 2β − k − 7)

r2

t2

Define T0 as T0 =
2α(γ − 1)(k + 1)

Γ[2 + (γ − 1)(k + 1)]2(2α− 2β − k − 7)

∇T = 2T0
r

t2
r̂

−4acλ0

3
ραT β+3∇T = −4acλ0

3
ρα0 r
−(2β+k+7)t

−α(k+1)−2β−k−7
2+(γ−1)(k+1) T β+4

0 t−2(β+4)r2(β+3)2rr̂

= −4acλ0

3
ρα0T

β+4
0 r−kt−2β−8r̂

∇ · F = ∇ · (−4acλ0

3
ρα0T

β+4
0 r−kt−2β−8r̂)

= −4acλ0

3
ρα0T

β+4
0 t−2β−8∇ · (r−kr̂)

= −4acλ0

3
ρα0T

β+4
0 t−2β−8(2kπδ(r))

28

D Parameters Where Coggeshall 8 and 9 are Valid at the Origin

The original equation for the conservation of energy with the heat flux after the assumption of
radiation energy and momentum being negligible is

∂

∂t
(
1

2
ρu2 + E) +∇ · [(1

2
ρu2 + E + P)u + F] = 0

Without any quantity explicitly containing a delta distribution, the only way to cancel a delta
distribution in the ∇ · F term is for the ∇ · [(1

2ρu
2 + E + P)u] to contain an equal and opposite

delta distribution.

Coggeshall 8

From the previous section

∇ · F = −4acλ0

3
ρα0T

β+4
0 t(β−α+4)(k+1)−γ(β+4)(k+1)+(k−1)(2kπδ(r))

Now starting with

∇ · [(1

2
ρu2 + E + P)u] = ∇ · (1

2
ρu2u +

Γ

γ − 1
ρTu + ΓρTu)

= ∇ · (1

2
ρu2u +

Γγ

γ − 1
ρTu)

ρ = ρ0r
k−1

β−α+4 t
−k−1− k−1

β−α+4

u =
r

t
r̂

T = T0r
1−k

β−α+4 t
(1−γ)(k+1)+ k−1

β−α+4

∇ · [(1

2
ρu2 + E + P)u] = ∇ · (1

2
ρ0r

k−1
β−α+4 t

−k−1− k−1
β−α+4

r3

t3
r̂

+
Γγ

γ − 1
ρ0r

k−1
β−α+4 t

−k−1− k−1
β−α+4T0r

1−k
β−α+4 t

(1−γ)(k+1)+ k−1
β−α+4

r

t
r̂)

= ∇ · (ρ0

2
r

3+ k−1
β−α+4 t

−k−4− k−1
β−α+4 r̂ +

Γγ

γ − 1
ρ0T0rt

−1−γ(k+1)r̂)

= ∇ · (ρ0

2
r

3+ k−1
β−α+4 t

−k−4− k−1
β−α+4 r̂) +

Γγ

γ − 1
ρ0T0t

−1−γ(k+1)

So to produce a delta distribution, r
3+ k−1

β−α+4 must be equal to r−k

−k = 3 +
k − 1

β − α+ 4

−k − 3 =
k − 1

β − α+ 4

(−k − 3)(β − α+ 4) = k − 1

(β − α+ 4) =
k − 1

−k − 3

β = α− k − 1

k + 3
− 4

29

Now for the resulting delta distribution to cancel with the one produced by the heat flux, they
must have the same time dependence.

t(β−α+4)(k+1)−γ(β+4)(k+1)+(k−1) = t
−k−4− k−1

β−α+4

(β − α+ 4)(k + 1)− γ(β + 4)(k + 1) + (k − 1) = −k − 4− k − 1

β − α+ 4

−k − 1

k + 3
(k + 1)− γ(α− k − 1

k + 3
)(k + 1) + (k − 1) = −k − 4− k − 1

−k−1
k+3

−k − 1

k + 3
(k + 1)− γ(α− k − 1

k + 3
)(k + 1) + (k − 1) = −k − 4 + k + 3

−k − 1

k + 3
(k + 1)− γ(α− k − 1

k + 3
)(k + 1) = −k

−k − 1

k + 3
− γ(α− k − 1

k + 3
) = − k

k + 1

−(k − 1)− γ(α(k + 3)− k + 1) = −k
2 + 3k

k + 1

−γ(α(k + 3)− k + 1) = −k
2 + 3k

k + 1
+ k − 1

γ(α(k + 3)− k + 1) =
k2 + 3k − k2 + 1

k + 1

γ(α(k + 3)− k + 1) =
3k + 1

k + 1

γ =
3k + 1

(k + 1)(α(k + 3)− k + 1)

Finally, they must have the same magnitude

ρ0

2
=

4acλ0

3
ρα0T

β+4
0

ρ1−α
0 =

8acλ0

3
T β+4

0

ρ0 =

(
8acλ0

3
T β+4

0

) 1
1−α

So, as long as this set of equations is satisfied, Coggeshall solution 8 is a solution.

β = α− k − 1

k + 3
− 4 (40)

γ =
3k + 1

(k + 1)(α(k + 3)− k + 1)
(41)

ρ0 =

(
8acλ0

3
T β+4

0

) 1
1−α

(42)

30

Coggeshall 9

Repeating the same argument for Coggeshall solution 9

∇ · [(1

2
ρu2 + E + P)u] = ∇ · (1

2
ρu2u +

Γ

γ − 1
ρTu + ΓρTu)

= ∇ · (1

2
ρu2u +

Γγ

γ − 1
ρTu)

ρ = ρ0r
− 2β+k+7

α t
−2

α(k+1)−2β−k−7
α[2+(γ−1)(k+1)]

u =
2

2 + (γ − 1)(k + 1)

r

t

T =
2α(γ − 1)(k + 1)

Γ[2 + (γ − 1)(k + 1)]2(2α− 2β − k − 7)

r2

t2
= T0

r2

t2

∇ · [(1

2
ρu2 + E + P)u] = ∇ · (1

2
ρ0r
− 2β+k+7

α t
−2

α(k+1)−2β−k−7
α[2+(γ−1)(k+1)] (

2

2 + (γ − 1)(k + 1)
)3 r

3

t3
r̂

+
Γγ

γ − 1
ρ0r
− 2β+k+7

α t
−2

α(k+1)−2β−k−7
α[2+(γ−1)(k+1)]

2

2 + (γ − 1)(k + 1)

r

t
T0
r2

t2
r̂)

= ∇ · (ρ0

2
(

2

2 + (γ − 1)(k + 1)
)3r

3α−2β−k−7
α t

−3−2
α(k+1)−2β−k−7
α[2+(γ−1)(k+1)] r̂

+
Γγ

γ − 1

2

2 + (γ − 1)(k + 1)
ρ0T0r

3α−2β−k−7
α t

−3−2
α(k+1)−2β−k−7
α[2+(γ−1)(k+1)] r̂)

= ∇ · [(1

2
(

2

2 + (γ − 1)(k + 1)
)2

+
Γγ

γ − 1
T0)

2

2 + (γ − 1)(k + 1)
ρ0r

3α−2β−k−7
α t

−3−2
α(k+1)−2β−k−7
α[2+(γ−1)(k+1)] r̂]

For this to produce a delta distribution

3α− 2β − k − 7

α
= −k

3α− 2β − k − 7 = −αk
(3 + k)α = 2β + k + 7

α =
2β + k + 7

k + 3

31

Of course, they must have the same time dependence

−β − 8 = −3− 2
α(k + 1)− 2β − k − 7

α[2 + (γ − 1)(k + 1)]

−β − 5 = −2
α(k + 1)− 2β − k − 7

α[2 + (γ − 1)(k + 1)]

β + 5

2
=
α(k + 1)− 2β − k − 7

α[2 + (γ − 1)(k + 1)]

β + 5

2
=

α(k + 1)− (3 + k)α

α[2 + (γ − 1)(k + 1)]

β + 5

2
=

(k + 1)− (3 + k)

2 + (γ − 1)(k + 1)

(β + 5)[2 + (γ − 1)(k + 1)] = −4

2 + (γ − 1)(k + 1) = − 4

β + 5

(γ − 1)(k + 1) = −2− 4

β + 5

γ − 1 = − 2

k + 1
− 4

(β + 5)(k + 1)

γ =
k − 1

k + 1
− 4

(β + 5)(k + 1)

32

To make the coefficients be equal in magnitude so that the delta distributions cancel

4acλ0

3
ρα0T

β+4
0 =

(
1

2

(
2

2 + (γ − 1)(k + 1)

)2

+
Γγ

γ − 1

)
2

2 + (γ − 1)T0)(k + 1)
ρ0

ρα−1
0 =

(
1

2

(
2

2 + (γ − 1)(k + 1)

)2

+
Γγ

γ − 1

)
3

4acλ0[2 + (γ − 1)T0)(k + 1)]
T
−(β+4)
0

ρ0 =

[(
1

2

(
2

2 + (γ − 1)(k + 1)

)2

+
Γγ

γ − 1

)
3

4acλ0[2 + (γ − 1)T0)(k + 1)]
T
−(β+4)
0

] 1
α−1

=

[(
1

2

(
2

2 + (γ − 1)(k + 1)

)2

+
Γγ

γ − 1

)
3

4acλ0[2 + (γ − 1)T0)(k + 1)]

] 1
α−1

·
[

2α(γ − 1)(k + 1)

Γ[2 + (γ − 1)(k + 1)]2(2α− 2β − k − 7)

]−(β+4)
α−1

=

[(
1

2

(
2

2 + (γ − 1)(k + 1)

)2

+
Γγ

γ − 1

)
3

4acλ0[2 + (γ − 1)T0)(k + 1)]

] 1
α−1

·
[

2α(γ − 1)(k + 1)

Γ[2 + (γ − 1)(k + 1)]2(2α− α(k + 3))

]−(β+4)
α−1

=

[(
1

2

(
2

2 + (γ − 1)(k + 1)

)2

+
Γγ

γ − 1

)
3

4acλ0[2 + (γ − 1)T0)(k + 1)]

] 1
α−1

·
[

2α(γ − 1)(k + 1)

Γ[2 + (γ − 1)(k + 1)]2(−α(k + 1))

]−(β+4)
α−1

=

[(
1

2

(
2

2 + (γ − 1)(k + 1)

)2

+
Γγ

γ − 1

)
3

4acλ0[2 + (γ − 1)T0)(k + 1)]

] 1
α−1

·
[

2(γ − 1)

Γ[2 + (γ − 1)(k + 1)]2

]−(β+4)
α−1

So to summarize, Coggeshall solution 9 is a solution if the following system of equations is satisfied.

α =
2β + k + 7

k + 3
(43)

γ =
k − 1

k + 1
− 4

(β + 5)(k + 1)
(44)

ρ0 =

[(
1

2

(
2

2 + (γ − 1)(k + 1)

)2

+
Γγ

γ − 1

)
3

4acλ0[2 + (γ − 1)T0)(k + 1)]

] 1
α−1

(45)

·
[

2(γ − 1)

Γ[2 + (γ − 1)(k + 1)]2

]−(β+4)
α−1

(46)

33

E Coggeshall Solution 9 with Different Values of β

β = −3.10:

u(r, t) =
r

2t

ρ(r, t) =
1

r1.87t0.57

T (r, t) =
2.81r2

t2

F (r, t) =
−3381.60

r2t2.65

P (r, t) =
1.88r0.13

t2.57

S(r, t) =
1.77r

t

β = −3.60:

u(r, t) =
r

2t

ρ(r, t) =
1

r1.20t0.90

T (r, t) =
0.47r2

t2

F (r, t) =
−984.73

r2t2.15

P (r, t) =
0.31r0.80

t2.90

S(r, t) =
0.72r

t

β = −3.75:

u(r, t) =
r

2t

ρ(r, t) =
1

rt

T (r, t) =
0.38r2

t2

F (r, t) =
−1043.9

r2t2

P (r, t) =
0.25r

t3

S(r, t) =
0.65r

t

34

β = −3.80:

u(r, t) =
r

2t

ρ(r, t) =
1

r0.93t1.03

T (r, t) =
0.35r2

t2

F (r, t) =
−1081.78

r2t1.95

P (r, t) =
0.23r1.07

t3.03

S(r, t) =
0.62r

t

β = −3.90:

u(r, t) =
r

2t

ρ(r, t) =
1

r0.80t1.10

T (r, t) =
0.31r2

t2

F (r, t) =
−1186.93

r2t1.85

P (r, t) =
0.21r1.20

t3.10

S(r, t) =
0.59r

t

β = −4.00:

u(r, t) =
r

2t

ρ(r, t) =
1

r0.67t1.17

T (r, t) =
0.28r2

t2

F (r, t) =
−1333.33

r2t1.75

P (r, t) =
0.19r1.33

t−3.17

S(r, t) =
0.56r

t

35

β = −4.10:

u(r, t) =
r

2t

ρ(r, t) =
1

r0.53t1.23

T (r, t) =
0.26r2

t2

F (r, t) =
−1528.16

r2t1.65

P (r, t) =
0.17r1.47

t3.23

S(r, t) =
0.53r

t

β = −4.20:

u(r, t) =
r

2t

ρ(r, t) =
1

r0.40t1.30

T (r, t) =
0.23r2

t2

F (r, t) =
−1782.20

r2t1.55

P (r, t) =
0.16r1.60

t3.30

S(r, t) =
0.51r

t

β = −4.40:

u(r, t) =
r

2t

ρ(r, t) =
1

r0.13t1.43

T (r, t) =
0.20r2

t2

F (r, t) =
−2533.69

r2t1.35

P (r, t) =
0.13r1.87

t3.43

S(r, t) =
0.47r

t

36

β = −4.50:

u(r, t) =
r

2t

ρ(r, t) =
1

t1.50

T (r, t) =
0.19r2

t2

F (r, t) =
−3079.20

r2t1.25

P (r, t) =
0.12r2

t−3.50

S(r, t) =
0.46r

t

β = −5.25:

u(r, t) =
r

2t

ρ(r, t) =
r

t2

T (r, t) =
0.12r2

t2

F (r, t) =
−17939.12

r2t0.50

P (r, t) =
0.08r3

t4

S(r, t) =
0.37r

t

β = −6.00:

u(r, t) =
r

2t

ρ(r, t) =
r2

t2.50

T (r, t) =
0.09r2

t2

F (r, t) =
−151703.70

r2t0.25

P (r, t) =
0.06r4

t4.50

S(r, t) =
0.32r

t

37

2013 Computational Physics Student Summer Workshop: Final Reports

Using High-Fidelity Radiation
Transport Methods to Supplement

the Diffusion Approximation at
Material Interfaces

(Todd Urbatsch and Scott Runnels,

mentors)

LA-UR-13-26532
Approved for public release; distribution is unlimited.

Title: Using High-Fidelity Radiation Transport Methods to Supplement the
Diffusion Approximation at Material Interfaces

Author(s): Ruiz, Daniel E
Stephey, Laurie A

Intended for: Show to colleages at home institutions
Report

Issued: 2013-08-19

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National
Security, LLC for the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.
By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to
publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.
Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the
U.S. Departmentof Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish;
as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Using High-Fidelity Radiation Transport Methods to

Supplement the Diffusion Approximation at Material Interfaces

Daniel E. Ruiz and Laurie A. Stephey
Mentors: Todd Urbatsch and Scott Runnels

16 August 2013

Acknowledgements

Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the Nuclear
Security Administration of the U. S. Department of Energy under contract DE-AC52-06NA25396.

1 Abstract

Today, many radiation-hydrodynamics simulations use methods that combine hydrodynamics and ra-
diation diffusion algorithms. The diffusion model has been used because it provides faster calculations
for the radiation scalar flux than the full radiation transport model. [5, 7, 8] However, it is well-known
that diffusion cannot resolve “transport effects” at material interfaces. This could cause erroneous pre-
dictions when coupling the radiation results with a material hydrodynamics calculation. In this work,
the “transport effects” are thoroughly characterized using IMC and SN transport methods. Based on
the information obtained from this study, new models based on diffusion that can capture these effects
are developed. These models are subsequently compared with the full radiation transport model. It is
hoped that the new models can be used to provide improved predictions in rad-hydro simulations, such
as in ICF capsule implosions.

2 Keywords

Thermal Radiation Transport, Radiation Transport Boundary Effects, SN Approximation, Implicit
Monte Carlo, Hybrid Transport-Diffusion Method, Radiation Hydrodynamics.

1

Contents

1 Abstract 1

2 Keywords 1

3 Introduction 3

4 Thermal Radiation Transfer: Basic Equations and Approximations 4

5 Problem Statement 5

6 Radiation Transport Methods 7
6.1 Implicit Monte Carlo (IMC) Method . 7
6.2 Discrete Ordinates (SN) . 9
6.3 Radiation Diffusion Method . 10

7 Large scale parameter study 11
7.1 Parameter Scans . 11
7.2 Opacity . 11
7.3 Source Temperature . 12
7.4 Material Length . 12

8 Methods for capturing “transport effects” 12
8.1 Surrogate Source Term . 12
8.2 Point-Source Term . 15
8.3 Hybrid Transport-Diffusion Method . 18
8.4 Hybrid Semi-Stationary Method . 19

9 Results 20
9.1 Results of the Surrogate Source Term Method . 20
9.2 Results of the Point-Source, Hybrid-Diffusion, and Hybrid Semi-Stationary Methods . . 22

9.2.1 Comparison with constant Σa . 22
9.2.2 Comparison with Temperature Dependent Σa . 24

10 Implementation in FLAG 26

11 Conclusions and Future Work 29

2

Figure 1: Different hydrodynamic effects might occur when modeling radiation with diffusion and transport
methods.

3 Introduction

Thermal radiation transport coupled with material hydrodynamics is an extremely complex engineering
problem. AT LANL, the FLAG code combines an ALE method to model the material hydrodynamics
and a radiation diffusion method to simulate the radiation field. The radiation diffusion model is a
commonly used transport calculation method because it is relatively inexpensive and can provide good
results in asymptotic limits. [5, 7, 8] However, as a result of the integration inherent in the method, it
cannot provide a detailed description of radiation transport in many circumstances.

It is well-known that radiation diffusion cannot capture “transport effects” at material boundaries
and/or interfaces. As an example, consider a situation where a normally incident photon flux travels
through an optically transparent medium (air) into an opaque medium (plastic). The diffusion method
predicts the highest temperature for the thick medium at the material interface. On the other hand, a
full radiation transport model would predict maximum temperatures at approximately 1 mfp inside the
thick material. When these results are coupled in a hydro simulation, the diffusion-hydro coupling could
predict molecular evaporation of the thick material surface. In contrast, the transport-hydro coupling
could predict melting and less material ablation. These effects are illustrated in Figure 1. It is therefore
imperative to correctly model the radiation at material interfaces in order to simulate the hydrodynamic
effects accurately.

The goal of this work is to study the radiation “transport effects” at optically thin-thick material
interfaces without considering material hydrodynamics. As a first objective, several radiation transport
methods will be used in order to carefully characterize the material interface for a wide variety of problem
parameters, such as: opacity, density, grid refinement, incoming photon flux, etc. The second objective
of this work is to study new models based on diffusion that can capture the “transport effects”. It is

3

hoped that these new models will be implemented into the LANL FLAG code in order to achieve better
predictions.

The work is organized as follows: in Section 4, the basic thermal transport mathematical model
is presented. The main assumptions and limitations of the model are discussed. Section 5 presents
the precise mathematical statement of the problem studied. Then in Section 6, the main benchmark
methods used for modeling thermal radiation transport are discussed. The primary methods used were
the Implicit Monte Carlo (IMC) method, the deterministic SN method and the Radiation Diffusion
method. Next, a thorough characterization of the boundary interface is presented in Section 7. After a
thorough understanding of the physical problem is obtained, new models based on diffusion are developed
and presented in Section 8. The results of these models are compared with the benchmark models in
Section 9. Conclusions are given in Section 11.

4 Thermal Radiation Transfer: Basic Equations and Approxi-
mations

The equations of thermal radiation transfer are a mathematical model that describes the physical pro-
cesses of photon scattering, absorption, and emission by a high-energy background material. In this
work, we will investigate the properties of the 1-D grey equations (as opposed to the multi-group equa-
tions). The governing equations are the following: [5, 15]

1

c

∂

∂t
ψ(x, µ, t) + µ

∂

∂x
ψ(x, µ, t) + Σa(x, T)ψ(x, µ, t) =

1

2
Σa(x, T)acT 4(x, t) (1)

∂

∂t
e(x, t) = Σa(x, T)

∫ 1

−1

ψ(x, µ′, t) dµ′ − Σa(x, T)acT 4(x, t) (2)

where ψ is the specific intensity, µ = cos(θ) ∈ [−1, 1], θ is the angle of the of the photon packet
direction with respect to the x-axis, Σ(x, T) is the photon macroscopic absorption cross-section, a =
7.5657(10)−16Jm−3K−4 radiation constant, c is the speed of light, T is the material temperature and e
is the material internal energy density. The common equation of state for the material internal energy
density is given by:

∂

∂t
e(x, t) = Cv(x, T)

∂

∂t
T (x, t) (3)

where Cv(x, T) is the specific heat capacity of the material. More precision on the initial and boundary
conditions will be described later when the problem statement is given.

Before we describe the problem in detail, we will first describe the assumptions implicit in the
governing equations above(1-3): [18]

• The photon density is large, so that fluctuations caused by individual photon dynamics can be
ignored. This simplification is key in order to derive the Boltzmann transport equation (1).

• Interference effects are ignored since the transport equation is an equation for intensities rather
than amplitudes. Photons are necessarily treated as incoherent.

• No diffraction or reflection is possible. These phenomena depend upon interference among the
waves arising from different scattering centers that scatter the same photon.

• Light polarization is neglected.

4

• Refraction and dispersion are neglected. That is, the refractive index n is taken as unity. Photons
always travel at the speed of light, regardless of the material in which they are traveling.

• The material medium is assumed to be isotropic. Consequently, the photon emission is also
isotropic.

• Assuming that the material is in local thermodynamic equilibrium, its energy is described solely
by specifying its temperature. The general equations of heat transfer contain terms that describe
convective, conductive, and radiative source and loss terms. However, here we assume that the ra-
diative term is sufficient to describe the heat transfer. Since the material is in local thermodynamic
material, its radiation emission follows the Stephan-Boltzmann radiation law.

• A 1D geometry is used. Hence, we assume that there is an azimuthal symmetry for the problem.

• Grey absorption cross-sections are assumed. This allows a single energy group description of the
Boltzmann transport equation to be used.

5 Problem Statement

In this section, we will describe the primary problem of interest. Many simplifications have been made to
make this problem tractable. In future work, some of these assumptions may be relaxed so the problem
can be generalized. The statement of the problem is as follows:

Statement of problem: Calculate the values of ψ(x, µ, t) and T (x, t) given the following equations
describing the thermal radiation transport:

1

c

∂

∂t
ψ(x, µ, t) + µ

∂

∂x
ψ(x, µ, t) + Σa(x, T)ψ(x, µ, t) =

1

2
Σa(x, T)acT 4(x, t) (4)

Cv(x, T)
∂

∂t
T (x, t) = Σa(x, T)

∫ 1

−1

ψ(x, µ′, t) dµ′ − Σa(x, T)acT 4(x, t) (5)

with the initial conditions

ψ(x, µ, t = 0) = 0,∀x ∈ R+,∀µ ∈ [−1, 1] (6)

T (x, t = 0) = 0, x ∈ R+ (7)

and the boundary conditions

ψ(x = 0, µ, t) = ψl(µ),∀µ ∈ [0, 1],∀t ∈ R+ (8)

ψ(x = +∞, µ, t) = 0,∀µ ∈ [−1, 1],∀t ∈ R+ (9)

where the material properties are given by

Σa(x, T) =

{
Σa1 0 ≤ x < L1

Σa2 x ≥ L1
(10)

Cv(x, T) =

{
Cv1 0 ≤ x < L1

Cv2 x ≥ L1
(11)

5

Figure 2: Problem Setup with Temperature distribution from IMC results.

where Σa1, Σa2, Cv1 and Cv2 are constants.

As a summary, we wish to describe the thermal radiative transfer for the time-dependent half-space
problem: (x, t) ∈ R+ × R+. The initial conditions for the specific intensity and the temperature field
are zero. At the left-side of the half-space domain, an entering photon flux ψl is given. At x = +∞, the
specific intensity is zero. The computational grid is divided into two regions composed of two materials.
The length of the first material is L1. We assume that the material properties (Σ, Cv) remain constant
for each material. This physical problem is summarized in Figure 2. The main goal of this work will be
to study the radiative transfer boundary layer effects at the material interface.

Remark: An important note is that the system of equations (4-11) contain an energy conserva-
tion structure. [1] By integrating equation (4) with respect to µ and labeling the scalar flux φ(x, t) =∫ 1

0
ψ(x, µ′, t) dµ′ and the current flux J(x, t) =

∫ 1

−1
ψ(x, µ′, t)µ′ dµ′ , we obtain:

1

c

∂

∂t
φ(x, t) +

∂

∂x
J(x, t) + Σa(x, T)φ(x, t) = acT 4(x, t)

We add the last equation to equation 5 and we integrate over the entire half-space. The obtained
conservation law is:∫ +∞

0

∂

∂t

{
1

c
φ(x′, t) + ρ(x′)cv(x

′)T (x′, t)

}
dx′ =

∫ 1

0

ψl(µ
′)µ′ dµ′ = Jl (12)

The last equation shows that the change of the material internal energy and the radiation field energy
equals the incoming photon current flux.

Remark: In steady state, the material temperature field will be in equilibrium with the radiation
scalar flux field. In this situation, the specific intensity is described by the stationary pure transport
equation which was studied by Case, Davidson and Chandrasekhar: [4]

µ
∂

∂x
ψ(x, µ, t) + Σa(x)ψ(x, µ, t) =

1

2
Σa(x)

∫ 1

−1

ψ(x, µ′, t) dµ′

6

Remark: In order to adimensionalize the governing equations (4-11), we introduce the following
dimensionless parameters:

t̄ = cΣa2t x̄ = Σa2x ψ̄ = ψ/(σT 4
in) T̄ = T/Tin (13)

where σ is the Stephan-Boltzmann coefficient and σT 4
in =

∫ 1

−1
ψl(µ

′)µ′ dµ′. When introducing the
variable changes into equations (4-5), the equations become:

∂

∂t̄
ψ̄(x̄, µ, t̄) + µ

∂

∂x̄
ψ̄(x̄, µ, t̄) +

Σa(x)

Σa2
ψ̄(x̄, µ, t̄) = 2

Σa(x)

Σa2
T̄ 4(x̄, t̄) (14)

∂

∂t̄
T̄ (x̄, t̄) =

1

4

Σa(x)

Σa2

σT 3
in

ρ(x̄)cv(x̄)

{∫ 1

−1

ψ̄(x̄, µ′, t̄) dµ′ − 4T̄ 4(x̄, t̄)

}
(15)

As shown in the previous equation, the variable change introduces a dimensionless parameter: B0 =
σTin

3

ρ(x̄)cv(x̄)
, which is called the Boltzmann number. This dimensionless parameter describes how fast the

material temperature will change with the surrounding radiation field. In the case in which B0 � 1,
the material internal energy remains almost stationary and does not change. If the initial temperature
is zero, the material would never re-emit the captured photons. Hence, the source term of equation
(14) is null and the resulting transport equation with constant absorption would be easily solvable. On
the other hand, when B0 � 1, the material temperature immediately achieves equilibrium with the
surrounding radiation field. In this case, the transport equation for the radiation field can be very well
approximated by :

∂

∂t̄
ψ̄(x̄, µ, t̄) + µ

∂

∂x̄
ψ̄(x̄, µ, t̄) +

Σa(x)

Σa2
ψ̄(x̄, µ, t̄) =

1

2

Σa(x)

Σa2

∫ 1

−1

ψ̄(x̄, µ′, t̄) dµ′

which is the time-dependent Case problem with isotropic scattering.

6 Radiation Transport Methods

In this section, the three principal benchmark methods used for our studies are described. These are the
Implicit Monte Carlo Method (IMC), the Discrete Ordinates (SN) Method and the Radiation Diffusion
Method. For IMC, the algorithm used was the previously developed LANL MILAGRO code. [23] For
the SN method, the algorithm used was based on a numerical diamond scheme. The SN and Diffusion
algorithms were developed ad-hoc in order to provide more flexibility. These codes were compared with
the deterministic LANL SERRANO algorithm, on which the SN method used in this work is based. [3]

6.1 Implicit Monte Carlo (IMC) Method

Monte Carlo methods, in general, can only be used to solve linear equations. Due to the high degree
of non-linearity inherent in the radiative transfer equations, traditional Monte Carlo methods cannot
be used to solve this system. A method proposed by Fleck and Cummings [10] allows Monte Carlo
calculations to be used to solve a linearized version of the set of radiative transfer equations time-
implicitly.

The following overview draws on work published by McClarren and Urbatsch [15]. As above, we
begin with the grey thermal radiation transfer equations with no scattering:

1

c

∂I

∂t
+ Ω̂ · ∇I + σI =

1

4π
σacT 4 (16)

7

∂um
∂t

= σ

(∫
4π

IdΩ̂− acT 4

)
+ S (17)

To linearize the radiative transfer equations, Fleck and Cummings define an energy density vari-
able, ur. This is the value of the radiation energy density when the material and radiation are in
equilibrium. [15].

ur = aT 4 (18)

It is also common to rewrite the following term as:

∂um
∂ur

= β−1 (19)

Using these definitions, we can now rewrite the radiative transfer equations in the following form:

1

c

∂I

∂t
+ Ω̂ · ∇I + σI =

1

4π
cσur (20)

∂ur
∂t

= βσ

(∫
4π

IdΩ̂− cur
)

+ βS (21)

For this scheme to be implicit, an implicit definition of ur is required. The Fleck and Cummings [10]
approach averages over a time step:

ur
n+1 − urn

∆t
=

1

∆t

∫ tn+1

tn

dt[βσ

(∫
4π

IdΩ̂− cur
)

+ βS] (22)

We can thus determine the average value of ur:

ur ≈ αurn+1 + (1− α)ur
n (23)

We can substitute this value into the previous equation and perform a time-averaging procedure.
After this is completed, it is convenient to define the following factor (commonly called the Fleck factor):

f =
1

1 + αβσc∆t
(24)

which appears in the resulting expression:

ur = fur
n +

1− f
c

(∫
4π

IdΩ̂ +
1

σ
S

)
(25)

We can then substitute this expression for ur back into the first radiative transfer equation to find:

1

c

∂I

∂t
+ Ω̂ · ∇I + σI =

1

4π
(1− f)σ

∫
4π

IΩ̂ +
1

4π
(cσfur + (1− f)S) (26)

which is the now linearized equation that can be solved using Monte-Carlo methods. It should be noted
that in general this method is first-order accurate, but if α = 0.5 and β and σ are constant, this method
can be second-order accurate.

8

6.2 Discrete Ordinates (SN)

In a discrete ordinate method, equations (4-5) are solved for each angle µk, k = 1, ...,K in a quadrature
set with associated weights wk

K
k=1. For this work, a Gauss-Lengendre quadrature was used.

For practical reasons, the computational spatial domain cannot be infinite. We must therefore
substitute the spatial half-space by a finite space. We divide the spatial domain into J cells. The
position of each cell will be denoted by xj and will be numbered from j = 1, ..., J . A constant time-step

is used to discretize the time variable: tn = n∆t. By using ψn,kj , Tnj as approximations of the solutions

ψ(xj , µk, tn), T (xj , tn), the diamond scheme is the following:1

ψn+1,k
j − ψn,kj

∆t
+ µk

ψ
n+1/2,k
j+1/2 − ψn+1/2,k

j−1/2

∆x
+ Σ

n+1/2
a,j ψ

n+1/2,k
j =

1

2
Σ
n+1/2
a,j ac(T

n+1/2
j)4 (27)

Tn+1
j − Tnj

∆t
= Σ

n+1/2
a,j

1

C
n+1/2
v,j

{
K∑
k=1

ψ
n+1/2,k
j wk − ac(T̄n+1/2

j)4

}
(28)

with the following diamond relations:

ψn+1,k
j + ψn,kj = ψ

n+1/2,k
j−1/2 + ψ

n+1/2,k
j+1/2 (29)

ψ
n+1/2,k
j =

1

2

{
ψ
n+1/2,k
j−1/2 + ψ

n+1/2,k
j+1/2

}
(30)

T
n+1/2,k
j =

1

2

{
Tn+1
j + Tnj

}
(31)

As always, we use:

Σ
n+1/2
a,j = Σa(xj , T (x, tn+1/2)) C

n+1/2
v,j = Cv(xj , T (xj , tn+1/2)) (32)

It can be seen that the first diamond equation relates the values of the radiation field at the cell j
of the previous and next time steps with the radiation fields at the cell edges at half-time step. From
the first diamond relation, we can eliminate the unknown ψn+1,k

j . From the second relation, we can

eliminate ψ
n+1/2,k
j . Finally, with the third relation we can eliminate T

n+1/2
j . As an example, when

substituting these relations into equation (27), we obtain an implicit scheme for the variables ψ
n+1/2,k
j+1/2 ,

ψ
n+1/2,k
j−1/2 , and T

n+1/2,k
j .

The diamond scheme has the advantage of being able to naturally include the boundary conditions
for the radiation field. The left boundary condition:

ψn+1,k
1 + ψn,k1 = ψl(µk) + ψ

n+1/2,k
3/2 ,∀µk ∈ [0, 1],∀n > 0 (33)

where ψl(µk) is the left incoming flux. As mentioned above, the computational domain cannot be
infinite. Instead of the boundary condition (9), we use a vacuum boundary condition at some length L:

ψn+1,k
J + ψn,kJ = ψ

n+1/2,k
J−1 ,∀µk ∈ [−1, 0],∀n > 0 (34)

1G. Allaire used the diamond scheme to solve the time-dependent neutron transport equation with scattering. Here
we modified the scheme in order to model thermal radiation transport. [1]

9

For the linear transport case, the diamond scheme described above has been proven to be consistent
and stable.2 It has a truncation error of order O(∆x2 + ∆t2). It is important to also note that
the present scheme has a fast convergence speed. When substituting the diamond relations into the

discretized equations, for µk > 0, ψ
n+1/2,k
j+1/2 depends only on ψ

n+1/2,k
j−1/2 . Hence, ψ

n+1/2,k
j+1/2 can be calculated

quickly from left to right. Once the new values of ψ
n+1/2,k
j+1/2 have been updated, the new temperature

field is obtained. The process is iterated until both the radiation and temperature fields satisfy equations
(27-28) at the time step n. Since the radiation field variables are calculated almost directly, the only
iterated variable at each time step is the temperature field. Hence, there is a high convergence rate for
this method.

6.3 Radiation Diffusion Method

The Radiation Diffusion Method is commonly used for rad-hydro applications since it is a convenient,
fast method to obtain the radiation scalar field. [5,7,8] There are many procedures to obtain the diffusion
approximation from the radiation transport equation. One of them involves making the assumption that
the radiation specific intensity can be written as follows:

ψ(x, µ, t) =
1

2
φ(x, t) +

3

2
µJ(x, t) +O(µ2)

When inserting the last approximation into the radiation transport equation and taking the zeroth
and first moments on µ, the resulting radiation diffusion equations are:

Radiation Diffusion
1

c

∂

∂t
φ− ∂

∂x

1

3Σ

∂

∂x
φ+ Σaφ = ΣaacT

4 (35)

Material Internal Energy

Cv(x, T)
∂

∂t
T = Σaφ− ΣaacT

4 (36)

These equations are much easier to solve than the full transport formulation since the angular
dependence on the radiation field no longer needs to be calculated. The main variables to be calculated
are only the scalar flux φ(x, t) and the temperature field T .

To complete the formulation of the diffusion problem, an approximate expression for the scalar flux
at the boundary must be obtained. Instead of using the usual Marshak boundary conditions [11, 21],
the asymptotic diffusion-limit boundary conditions will be used. [12] The boundary conditions for the
scalar flux are written as:

2

∫ 1

0

W (µ′)ψl(µ
′) dµ′ = φ(0, t)− λ

Σa(0, T)

∂

∂x
φ(0, t),∀t > 0 (37)

0 = φ(L, t) +
λ

Σa(L, T)

∂

∂x
φ(L, t),∀t > 0 (38)

where λ ' 0.7104 is an extrapolation factor and W (µ) is a weighting function given by W (µ) ' µ+ 3
2µ

2

.

2This is proven for the linear case in neutron transport theory. [1]

10

Figure 3: The results of the opacity scan. All 25 scans lie almost exactly on top of each other. The shape of the
scalar flux is invariant in terms of mean free path.

7 Large scale parameter study

7.1 Parameter Scans

One approach to solving this problem is to amass a great deal of data and use it to tease out the
important physics in this problem.

Several large scale parameter scans were performed for the purpose of isolating the effect of changing
a single factor on the scalar photon flux. In each scan, unless otherwise noted, all parameters except
the ones discussed were held constant.

It should be noted that in steady-state, once the scalar flux is known, the material temperature can
determined in the following manner:

Tmat =
4

√
φs
ac

(39)

where a is the Stefan-Boltzmann constant.
Once determined, the scalar flux and the material temperature can provide important information

for both the radiation and the hydrodynamics aspects of the problem.

7.2 Opacity

The opacity of a material is the approximate “transparency” of the material to photons. In an analytic
material, the opacity can be a constant or a function. A scan was performed in which the opacity values
of the thin material and the thick material were varied. (It should be noted that the opacity of the thin
material was almost negligible, making the system effectively a single thick block in a void.)

The results of this scan are displayed in Figure 3. When the scalar flux and material temperature are
plotted as a function of distance, it is apparent that the curves seem to “stretch” with the computational
domain. When plotted as a function of mean free path, all 25 curves lie almost exactly on top of each
other, an expected result. The shape of the profiles is invariant in terms of the mean free path of the
thick material.

11

Figure 4: The results of the source temperature scan (left) and the results of the material length scan (right).
As the source temperature is increased, the scalar flux profile changes shape and increases in temperature. It
can also be seen that as the material becomes longer, the shape of the profile “stretches” with the material and
changes in shape.

7.3 Source Temperature

Another scan of incoming flux Planckian source temperature was performed. Photon source tempera-
tures were varied from 0.1 to 0.5 keV. (Smaller temperatures were simulated but the data were not used
since it took much longer for the system to relax to steady-state.) As shown in Figure 4, it can be seen
that by increasing the source temperature, the scalar flux also increases in a predictable manner.

7.4 Material Length

Another scan of varying lengths of the material was performed. The length of the optically thick material
was varied between 1 and 32 mean free paths. As shown in Figure 4, the shape of both profiles of interest
again changed in a predictable manner as a function of material length.

Though the opacity of the thick material provides an effectively dimensionless parameter by which
the shape of the profiles of interest can be determined, both the source temperature and the material
length can not be boiled down to a dimensionless number in this same fashion. Moreover, the profiles are
both simultaneously a function of source temperature and material length. This required an additional
parameter scan in which both the source temperature and the material length were varied simultaneously.
These results can be used to create surfaces of values; this will be discussed in detail in what follows.

8 Methods for capturing “transport effects”

8.1 Surrogate Source Term

The goal of performing these large, computationally intensive scans was to develop an understanding
of the relevant physical variables in the system. Once we had determined the important parameters in
the system, our aim was to independently generate the shapes of the scalar flux profile in a variety of
situations using surrogate functions. These surrogate functions, given the opacity of the thick material
(and hence the mean free path), the source temperature, and the material length, could be used to
generate the appropriate profiles from a lookup table without performing a full transport calculation.

12

Figure 5: The coefficient surfaces for the photon scalar flux fit function. It can be seen that the coefficients are
both a function of the source temperature and the material length.

The form of the scalar photon flux comes naturally from the form of the radiative transfer equations.
It can be seen that in the limit of isotropic scattering (several mean free paths into the material), the
familiar asymptotic behavior of the diffusion approximation is recovered. It is of the following form:

φfit(x) = ae−bx + cx+ d (40)

If the data are plotted in terms of the mean free path (x), the dependence on the opacity effectively
disappears. The functional dependence of the profiles on the source temperature, which we will refer to
as Ts, and the material thickness, which we will refer to as `, is not so straightforward. As described
above, a parameter scan in which the source temperature and material thickness were simultaneously
changed was performed. The resulting fit coefficients, a, b, c and d, for each simulation were plotted and
interpolated into a smooth surface. Each surface map is essentially a lookup table.

Therefore, the surrogate functions can be used to generate the scalar flux using the following expres-
sion:

φfit(x, Ts, `) = a(Ts, `)e
−b(Ts,`)x + c(Ts, `)x+ d(Ts, `) (41)

The user can now specify the parameters which will be used to generate the scalar photon flux. An
example surrogate function for a case with a 0.1 keV source temperature and a length of 8 mfps is shown
in Figure 6.

Radiation Diffusion Equation in Steady-State:

− d

dx

1

3Σa(x, T)

d

dx
φs + Σa(x, T)φs = S(ψls) + ΣaacTs

4 (42)

Material Internal Energy Equation:

Σa(x, T)φs = Σa(x, T)acTs
4 (43)

13

Figure 6: (left) An example profile of scalar photon flux generated by the surrogate function. (right) An example
source function determined using the coefficients of the surrogate function.

where the subscript s indicates a stationary quantity. Combining these equations leads to:

− d

dx

1

3Σa(x, T)

d

dx
φs = S(ψl) (44)

The source term is therefore proportional to the second derivative of the photon scalar flux. Since we
have determined an analytic form that described the scalar flux, we can substitute it into this equation
to find the form of the new source term. An example source term determined in this manner is shown
in Figure 6.

S(x, Ts, `) = −1

3
Σaa(Ts, `)b(Ts, `)

2e−b(Ts,`)x (45)

Now that the form of the surrogate source function has been determined, it can be inserted directly
into a radiation diffusion code. However, with the addition of this new source term, care must be taken
to ensure that the boundary conditions are still correct. A form similar to the Marshak boundary
condition was used.

The LHS boundary condition (at x=0):

Jin = φfit −
A

3

dφfit
dx

(46)

The RHS boundary condition (at x=L):

0 = φfit +
B

3

dφfit
dx

(47)

Since the analytic form of φfit has been determined, it can be substituted into the boundary con-
ditions to obtain the values of A and B in terms of the fit coefficients a, b, c and d necessary to ensure
that the proper conditions are satisfied.

It should be emphasized that the source term is a steady-state function, even though it is used in
a time-dependent diffusion calculation. Furthermore, the finite length of the material slab allows the
system to settle into an equilibrium that would not be possible in the case of an infinite medium.

14

Optically
Thick Medium

Optical Transparent
Medium

Non-Isotropic
Incident Flux

Void

1 optical length

Photons Absorption

Figure 7: The incoming photons coming from the boundary are replaced by a single isotropic point-source.

8.2 Point-Source Term

It can be shown mathematically that the steady-state solution of the pure diffusion formulation (35-36)
will always be monotonically decreasing. Hence, the maximal in scalar flux and temperature shown by
the full transport solution could never be obtained by a simple modification of the boundary conditions.
Thus, the diffusion formulation must be modified.

One possible solution is to add a photon source term at the place where the maximal in scalar
flux is occurring. This approach was introduced earlier by Haskell. [9] Haskell argued that in a semi-
infinite geometry with a photon source, which is typically a laser beam normally incident to the surface,
most photon absorption events occur at one optical depth inside the material. Hence, he makes the
approximation that the incoming photons from the boundary are replaced by a single isotropic point-
source located a transport mean free path into the medium. A schematic of the approximation is
presented in Figure 7. The formulation of the method is as follows:

Radiation Diffusion Equation:

1

c

∂

∂t
φ(x, t)− ∂

∂x

1

3Σa(x, T)

∂

∂x
φ+ Σa(x, T)φ = S(ψl)δ(x− xs(t))︸ ︷︷ ︸

source term

+ΣaacT
4 (48)

Material Internal Energy Equation:

Cv(x, T)
∂

∂t
T (x, t) = Σa(x, T)φ− Σa(x, T)acT 4 (49)

As seen above, the radiation diffusion equation is modified in order to include an isotropic source
term of magnitude S(ψl) located at the position xs(t). The magnitude of the source term is a function
only of the original incoming photon flux boundary condition. It is equal to the total number of incoming
photons in the original situation:

S(ψl) =

∫ 1

0

ψl(µ
′) dµ′ (50)

The isotropic source term is located at one mean free path into the medium:∫ xs(t)

0

Σa(x′, T (x′, t)) dx′ = 1 (51)

15

Figure 8: Stationary Scalar Flux and Temperature Fields.

It is worth noting that if the absorption coefficients are temperature dependent, the location of the
point-source is time-dependent.

One possible complication that could arise from this method would be to treat the case where there
is a non mono-directional incoming flux. One possible solution to this problem would be to decompose
the incoming flux in array bins and for each bin, a separate source term could be placed inside the
material. Hence, instead of a single source term, a collection of source terms would be placed. The
magnitude of each source term would depend on the portion of the incoming photon flux represented
by each bin.

Equations (48-51) together with the initial conditions and void boundary conditions define the prob-
lem completely. Results for the stationary distributions of the scalar-flux and temperature are shown
in Figure 8. The results of the transport method, conventional diffusion and diffusion with point-source
are compared for a situation of normally incident photon flux. As seen in Figure 8, the point-source
diffusion shows a maximum in scalar flux and temperature at approximately the same location as the
transport solution. Also, the point-source diffusion describes the fields correctly at the asymptotic limit.
However, the point-source solution shows a sharper profile and it predicts lower-temperatures and scalar
fluxes inside the optically thin material.

In order to correct the deficiencies of the point-source method inside the optically thin material,
the last described method could be modified in a way that only a certain fraction of the incoming
photons from the boundary are replaced by the point-source. We now introduce the parameter α which
denotes the fraction of incoming photons replaced by the source term. Evidently, if α = 1 we recover
the point-source method by Haskell while for α = 0, we have the conventional diffusion method. Hence,
the magnitude of the source term and the left boundary condition are re-defined as:

S(ψl) = α

∫ 1

0

ψl(µ
′) dµ′ (52)

φ(0, t)− λ

Σa(0, T)

∂

∂x
φ(0, t) = 2(1− α)

∫ 1

0

W (µ′)ψl(µ
′) dµ′ ,∀t > 0 (53)

The results are shown in Figures 9 and 10. The result in Figure 9 differs from that of Figure 10
in the thickness of the slab. The parameter α is varied from zero to one and the resulting stationary

16

Figure 9: Stationnary Scalar Flux and Temperature Fields for varying α.

Figure 10: Stationnary Scalar Flux and Temperature Fields for varying α.

scalar flux and temperature fields are plotted. For α = 1, the result corresponds to the point-source
diffusion method while α = 0 recovers the conventional diffusion result. For both geometries, when
α ' 0.70 the point-source method predicts the scalar flux and temperature fields more accurately for
the optically thin material. It is speculated that this value for α might be related to the diffusion-limit
boundary conditions’ constant introduced by Habetler. [12] However, this is still speculation and has
not been proven yet. It can also be shown mathematically that the variation of the α does not change
the location and magnitude of the maximal values of the fields.

In conclusion, improved results were obtained when 70% of the incoming photon flux was replaced
by a point-source located one mean free path inside the medium. It is still unknown if this partitioning
is indeed universal or if it is dependent of the system geometry. Future work will include more studies
on this method.

17

8.3 Hybrid Transport-Diffusion Method

In this section we present a hybrid method to model equations (4-9). The method is based on a first-
collision approximation. The motivation for this method comes from the following: among the many
ways to derive the diffusion approximation from the transport model, one is obtained by assuming that
the specific intensity ψ(x, µ, t) can be represented via a Taylor series to the first order on the angular
dependence:

ψ(x, µ, t) =
1

2
φ(x, t) +

3

2
µJ(x, t) +O(µ2)

Hence, it is assumed that the specific intensity has a small angular dependency: |Jφ | � 1. However,
when dealing with normally incident radiation, in which “transport” effects are most noticeable, the
ratio between the scalar flux and current flux is |φJ | ' 1. Hence, the angular expansion shown above is
invalid. The diffusion approximation cannot model the streaming photon radiation correctly.

In order to solve this problem, the radiation field can be divided into two parts: the first part
represents the uncollided photon flux while the latter represents the photons emitted by the material.
This decomposition has been studied before in neutron transport theory. [13,14,19,20] The decomposition
of the radiation flux would be written as follows:

ψ(x, µ, t) = ψuncollided(x, µ, t) + ψemitted(x, µ, t) (54)

where the uncollided flux and the emitted flux satisfy:

1

c

∂

∂t
ψuncollided + µ

∂

∂x
ψuncollided + Σaψuncollided = 0 (55)

1

c

∂

∂t
ψemitted + µ

∂

∂x
ψemitted + Σaψemitted =

1

2
ΣaacT

4 (56)

At the continuum level, this splitting is exact, i.e., if ψuncollided solves (55) and φemitted satisfies (56),
then ψ will satisfy (1) (with appropriate boundary conditions). Note that the equation for ψuncollided is
an equation for a pure absorber: there is no coupling in angle. Moreover, it is independent of ψemitted.
The angular integral of ψuncollided will act as a (first-collision) source for the internal energy equation.

The original idea of this type of splitting is to evaluate ψuncollided using an SN transport method.
Since the source term of equation (56) is isotropic, the emitted radiation can be modeled by using a
simple diffusion approximation. To the best of our knowledge, such a decomposition of the transport-
diffusion for thermal radiative transfer has never yet been explored. The formulation of the method is

as follows:
Uncollided Radiation Transport

1

c

∂

∂t
ψuncollided + µ

∂

∂x
ψuncollided + Σaψuncollided = 0 (57)

Emitted Radiation Diffusion

1

c

∂

∂t
φemitted −

∂

∂x

1

3Σ

∂

∂x
φemitted + Σaφemitted = ΣaacT

4 (58)

Material Internal Energy

Cv(x, T)
∂

∂t
T = Σa

{
φdiff +

∫ 1

−1

ψuncollided(x, µ
′, t) dµ′

}
− ΣaacT

4 (59)

18

While the initial conditions are trivially obtained from the original statement of the problem, the
boundary conditions are modified and adapted as follows:

ψuncollided(x = 0, µ, t) = ψl(µ),∀µ ∈ [0, 1],∀t > 0 (60)

ψuncollided(x = L, µ, t) = 0,∀µ ∈ [−1, 0],∀t > 0 (61)

φemitted(0, t)−
λ

Σa(0, T)

∂

∂x
φemitted(0, t) = 0,∀t > 0 (62)

φemitted(L, t) +
λ

Σa(L, T)

∂

∂x
φemitted(L, t) = 0,∀t > 0 (63)

where the conventional transport boundary conditions are adopted for the uncollided photons and the
asymptotic diffusion limit boundary conditions are used for the emitted photons. [12]

8.4 Hybrid Semi-Stationary Method

The Hybrid model, described above, requires a transport equation solver for the uncollided flux. Al-
though such a solver is quite simple, some large radiation hydrocodes do not include a transport module
and only have diffusion solvers. Since one of the main objectives of this work is to develop a new diffu-
sion model that captures the “transport effects” and that can be implemented into the rad-hydro code
FLAG, it is advantageous to eliminate the need of using a transport solver in the hybrid method.

It is possible to simply equations (57-59) by assuming the non-retardation approximation on the
uncollided radiation field. This approximation suggests that c → +∞ for the uncollided photons in
equation (57). Physically, the flight time of the uncollided photons is ignored. The modified equation
will be hence written as:

���
���

�:0
1

c

∂

∂t
ψuncollided + µ

∂

∂x
ψuncollided + Σaψuncollided = 0 (64)

In this model, the transport equation for the uncollided photon flux is solved without the temporal
derivative; hence, the name of the model. It is important to notice that although the temporal derivative
is ignored, the uncollided photon flux can still be time dependent. This occurs in the case in which the
photon absorption coefficients Σa are temperature dependent.

Although the above approximation might be considered too aggressive and its validity is somewhat
questionable, it is believed that the errors introduced by the non-retardation approximation are small.
Firstly, the location where the biggest error might be introduced is away from the incoming flux bound-
ary. The non-retardation approximation predicts that at a time t = 0+, the uncollided scalar radiation
flux is present everywhere in the system. Although the error is largest at locations farthest from the
boundary, the uncollided scalar flux also decreases exponentially with the optical mean free path. Hence,
there might be a compensation effect. A second reason why this approximation would not introduce
large errors is that the resulting scalar and temperature wave (Marshak wave) that results from the
configuration in this work originates from a feedback between the emitted radiation and the material
temperature. Since in steady-state the portion of uncollided radiation is negligible compared to the
emitted radiation, this leads to the belief that the non-retardation approximation would not change the
results abruptly.

19

The complete formulation for the Hybrid Semi-Stationary model is as follows: Uncollided Radiation
Field

ψuncollided(x, µ, t) = ψl(µ)exp

{
−
∫ x

0

Σa(x′, T (x′, t))
1

µ
dx′
}

(65)

Emitted Radiation Diffusion

1

c

∂

∂t
φemitted −

∂

∂x

1

3Σ

∂

∂x
φemitted + Σaφemitted = ΣaacT

4 (66)

Material Internal Energy

Cv(x, T)
∂

∂t
T = Σa

{
φdiff +

∫ 1

−1

ψuncollided(x, µ
′, t) dµ′

}
− ΣaacT

4 (67)

in which the uncollided radiation field ψuncollided(x, µ, t) is solved from equation (64). The initial and
boundary conditions for the Hybrid Semi-Stationary model remain the same as those presented for the
Hybrid model (60-63).

9 Results

The results of the methods described in Section 8 will be discussed here. The surrogate source model
will be discussed first and compared to the SN method, the method we assume provides the correct
answer. The remaining three methods will be discussed afterwards with an emphasis on the difference
in performance in cases with constant and non-constant heat capacity.

9.1 Results of the Surrogate Source Term Method

As described above, the surrogate source term is inherently an empirical method. Large-scale parameter
scans were performed with the goal of distilling down the large amounts of data to a concise physical
model. A fit function, which we call a surrogate function, informed by the structure of the radiative
transfer equations, was used to fit the photon scalar flux. The behavior of the four fit coefficients was
investigated as a function of opacity, source temperature, and material length. The results were used
to generate a surrogate source term which was implemented in a diffusion code to evaluate any possible
improvements to the conventional diffusion model.

Using the appropriate boundary conditions and the steady-state surrogate source term, the radia-
tion source diffusion calculation was run and compared to the SN solution, the steady-state solution
(calculated using the surrogate function), and the standard diffusion model. These results are shown in
Figure 11 at three different time-steps. It can be seen that the surrogate source model remains similar
to the SN solution throughout the simulation. In steady-state, the difference between the two models
for the peak material temperature is approximately half a percent. This agreement is promising and
suggests that this method is ready for more rigorous testing and implementation in a larger code such
as FLAG.

It should be noted that the results presented are for only a single case. Future work will include
investigating additional problems that include: dissimilar opacities, non-constant heat capacity, real
materials, and time-dependent behavior. If the method continues to provide good results, a new module
will be written and incorporated into the FLAG code to try to improve the accuracy of rad-hydro
calculations at a material interface.

20

Figure 11: Comparison of the intensities from several methods: diffusion, diffusion with the surrogate source
term, SN , and the steady-state solution. Each plot at three different time-steps (n=10,n=20, and n=200) shows
the evolution of scalar photon flux (left) and the material temperature (right). It can be seen that the surrogate
source term method agrees very well with the SN results.

21

9.2 Results of the Point-Source, Hybrid-Diffusion, and Hybrid Semi-Stationary
Methods

In this section, a comparison is made between the methods described in Section 8. The model to which
the other methods will be compared is the SN=20 transport model. The objective will be to see how the
methods previously described methods improve the conventional diffusion model.

Two cases will be studied in this section. These are:

• In the first case, a normally incident beam of photons incident from the left boundary travels
through an optically thin and thick media. The media have the same microscopic characteristics
(same σa and cv). Only their densities vary; the density of the optically thin material is 1000 times
smaller. The boundary between the two materials is located at 2mfp. The initial temperature and
initial scalar flux are zero.

• In the second case, the only change is that the absorption cross-sections are temperature-dependent.
They follow a law of the following form:

Σa(x, T) = Σa,0(x)(
Tref
T

)3

In order to avoid any singularities associated with zero temperature, the initial temperature is
1000K. The reference temperature Tref is 1000K.

9.2.1 Comparison with constant Σa

The results for the first case are shown in Figure 12. The plots in Figure 12 show the temporal evolution
of the scalar flux and the temperature fields. The scalar flux is plotted on the left and the material
temperature is plotted on the right. The temporal sequence increases from top to bottom.

In the first time-frame, some of the main differences between the methods are noticeable. As it can
be seen, the photon wave front is shown on the left side. It is accurately described by the SN method and
the Hybrid method. The diffusion solution has already propagated through the thin medium because
a constant Eddington factor was used in this study. If a flux-limited diffusion had been used, the
diffusion model would describe the wavefront more accurately. [6] The Hybrid Semi-Stationary model
predicts that the scalar flux has already propagated through all the medium. This is expected since the
non-retardation approximation was adopted for the uncollided radiation field. Finally, the Point-Source
diffusion predicts a strong radiation field at around 3 mfp due to the presence of the photon source.

In the second time-frame, the Marshak wave can be observed. The Marshak wave is a well-known
physical phenomenon that has been studied both numerically and analytically. [2, 17, 22] The diffusion
model over-predicts higher scalar flux and temperatures inside the optically thin material. The Point-
Source diffusion underpredicts the same quantities for the same material. Interestingly, both methods
follow the same asymptotic limit inside the thick material. For the Hybrid methods, both predict similar
solutions for the fields. Most importantly, both methods capture the “transport effects” at the material
interfaces. However, their maximum scalar fluxes and temperatures are smaller than those predicted
by the SN method. It is believed that the underestimated scalar flux and temperature inside the thick
material is compensated for by the slightly higher scalar flux and temperature inside the thin material.

The final time-frame shows the stationary scalar flux and temperature fields. As shown, the diffusion
model overestimates the scalar flux and temperature inside the optically thin material. However, it
accurately describes the aforementioned quantities at the asymptotic limit. The Point-Source diffusion

22

(a) Scalar Flux and Temperature Fields at initial time-step.

(b) Scalar Flux and Temperature Fields at time t = 1.66 (10)−8s.

(c) Scalar Flux and Temperature Fields at steady state.

Figure 12: Temporal evolution of Scalar Flux and Temperature Field with constant photon absorption cross-
sections.

23

overestimates the maximal scalar flux and temperature. The methods that best approximate the SN
transport solution are the Hybrid methods. The Hybrid and Hybrid Semi-Stationary predict the same
stationary fields. This provides some evidence about the validity of the non-retardation approximation.

As a final note, in this case the relative difference between the predicted maximal temperatures of
the SN and Hybrid solutions was only 3%. Although this difference might not be small enough from a
radiation transport perspective, it is still quite promising. If such Hybrid radiation models were coupled
with a material hydrodynamics code, the error of the Hybrid methods would not be very significant
from the hydrodynamic perspective. Hence, it is very probable that the Hybrid methods would lead to
better rad-hydro predictions.

9.2.2 Comparison with Temperature Dependent Σa

The results for the second case with temperature dependent Σa are shown in Figure 13. The graphs in
Figure 13 show the temporal evolution of the scalar flux and the temperature fields. On the left column,
the scalar flux is plotted while on the the right column the temperature field is shown. Time increases
from top to bottom.

In the first time-frame, the diffusion solution already predicts higher scalar flux and temperatures
in the optical thin material. The Point-Source diffusion method shows a maximum scalar flux and
temperature at the location of the photon isotropic source. As it can be seen, the Hybrid methods both
match the solution given by the SN method.

In the second time-frame, the photon source has moved to the right at approximately 3 mfp inside
the thick material. As shown in equation (51), the source location is defined at one optical depth inside
the system. Since the temperature field has increased considerably, the absorption coefficient Σa(x, T)
has decreased. Hence, the photon source needs to move to the right. For the Hybrid methods, the
methods underestimate the scalar flux and temperature field inside the system.

The final time-frame shows the stationary scalar flux and temperature fields. As shown, the diffusion
model clearly overestimates the scalar flux and temperature at all points. Surprisingly, the diffusion
model no longer predicts correctly the asymptotic limit inside the thick material as in the first case.
There are several possible explanations for this effect. The first is that these diverging results are due
to the high non-linearity introduced to the problem when the absorption cross-sections were allowed
to vary with temperature. It is speculated that some non-linear bifurcation could have produced this
error. Another possible explanation might be that there is an insufficient time-implicitness. Hence, not
all effects are being captured. More research will have to be done on the subject.

The Point-Source diffusion method clearly gives the wrong answer. Due to the rise in temperature
inside the system, the photon source was shifted to the right. It is worth noting that if a simulation with
higher incoming photon flux were to be performed, the temperatures inside the material would rise more.
Hence, the photon source could ultimately reach the right boundary of the system. In this situation,
the Point-Source diffusion model would eventually collapse. However, if the Point-Source reaches the
right boundary in the simulations, the material has become too thin and the diffusion approximation
would become invalid anyways.

As shown, the Hybrid methods evidently improve the solution using the conventional diffusion ap-
proach. However, they do not accurately reproduce the solution given by the transport SN method as in
the first case. Although the results might be discouraging, it is important to note that in this numerical
simulation, the temperature rose by almost a factor of two in the entire system. Hence, the photon mean
free path increased almost 8 times in the thick material. Since the photon mean free path increased to
a value comparable to the length of the system, it is expected that the diffusion approximation used

24

(a) Scalar Flux and Temperature Fields at time t = 1.64(10)−9s.

(b) Scalar Flux and Temperature Fields at time t = 1.66(10)−8s.

(c) Scalar Flux and Temperature Fields at steady state.

Figure 13: Temporal evolution of Scalar Flux and Temperature Field with temperature dependent absorption
cross-sections.

25

in the Hybrid methods would eventually collapse because there are no longer sufficient collisions. It
is expected that for situations in which the final photon mean free path is smaller than the system’s
length, the Hybrid methods would give correct results.

10 Implementation in FLAG

In this section, preliminary investigation into the mechanics of implementing the previous methods in
FLAG will be discussed. The equations of grey radiative hydrodynamics under the assumption of local
thermodynamic equilibrium can be found in Mihalas and Mihalas. [16] We have chosen to use the fluid
(or co-moving) frame formulation:

∂

∂t
ρ+∇ · (ρv) = 0 (68)

∂

∂t
(ρv) +∇ · (ρv ⊗ v) = −∇P +

1

c
ΣaFr (69)

∂

∂t
(ρe) +∇ · (ρev) = −ΣaacT

4 + ΣacEr (70)

∂

∂t
(Er) +∇ · (Erv) = −∇ · Fr − Pr : ∇v + ΣaacT

4 − ΣacEr (71)

∂

∂t
(Fr) +∇ · (Fr ⊗ v) = −c2∇ · Pr − cΣaFr (72)

where we have used the conventional notation used in the radiation hydrodynamics literature. The first
three equations describe the conservation of mass, momentum and internal energy of the material. The
last two equations describe the evolution of the radiation field.

The variables for the material properties are: ρ the matter density, v the velocity, e the matter
internal energy density, P and T the pressure and the temperature of the material, and Σa the absorption
opacity. The radiation field variables are: Er is the radiative energy density, Fr is the radiative flux,
and Pr is the radiative pressure tensor . The radiation field variables are defined as:

Er =
1

c

∫ +∞

0

∫
4π

ψdΩdν

Fr =

∫ +∞

0

∫
4π

Ω ψ dΩ dν

Pr =
1

c

∫ +∞

0

∫
4π

Ω⊗ Ω ψ dΩ dν

In the previous section, several methods were explored in order to improve the radiation diffusion
calculations. Here, only the Hybrid Semi-Stationary Method will be implemented into the radiation
hydrodynamic equations. However, the team hopes to explore the implementation of the other described
methods.

In the Hybrid Semi-Stationary Model, the radiation field is decomposed into two parts:

ψ = ψu + ψe

26

where ψu describes the radiation field composed by the uncollided photons while ψe represents the
emitted photons by the material. The validity of this decomposition was discussed in the previous
section.

The equations that are modified are the following:

∂

∂t
(ρv) +∇ · (ρv ⊗ v) = −∇P +

1

c
Σa
{
Fc + Fe

}
(73)

∂

∂t
(ρe) +∇ · (ρev) = −ΣaacT

4 + Σac {Eu + Ee} (74)

∂

∂t
(Ee) +∇ · (Eev) = −∇ · Fe − Pe : ∇v + ΣaacT

4 − ΣacEe (75)

∂

∂t
(Fe) +∇ · (Fe ⊗ v) = −c2∇ · Pe − cΣaFe (76)

The previous equations describe the the dynamics of the material properties and of the emitted
radiation field. In order to describe the uncollided radiation field, ψu, we will use the frequency-
dependent co-moving frame transport equation which can be found in Castor: [5]

1

c

{
∂

∂t
ψu,ν + v · ∇ψu,ν

}
+ Ω · ∇ψu,ν =

ν

c
Ω · ∇v · ∇νΩψu,ν −

3

c
Ω · ∇v · Ωψu,ν − Σaψu,ν (77)

As it can be seen, the transport equation in the co-moving frame is more complicated than that
in the fixed-laboratory frame. From a mathematical point of view, the co-moving transport equation
is a PDE for one scalar dependent variable in seven independent variables: x, y, z, two angles for Ω
and t. By contrast, the fixed-frame equation has only four independent variables: x, y, z and t. The
three photon momentum coordinates are only parameters. [5] In the following, the co-moving transport
equation will be solved in a simplified case.

The 1-D radiation problem was the focus of this work. Hence, we will define the spatial coordinate
x and use azimuthal symmetry. As done previously, we will apply the non-retardation approximation
so that the photon flight time can be neglected. The aberration correction in equation (77) will be
neglected. The simplified equation to solve is: [5]

(µ+
v

c
)
∂

∂x
ψu,ν = −1

c
µ2 ∂v

∂x
ν
∂

∂ν
ψu,ν − Σaψu,ν (78)

This last equation is still frequency-dependent. We can integrate in frequency in order to consider only

the grey transport equation:

(µ+
v

c
)
∂

∂x
ψu = −µ2 1

c

∂v

∂x
ψu − Σaψu (79)

This last equation can be easily solved. We note ψl(µ, t) the value of the incoming flux at the left

boundary (x=0) of the physical domain. The solution is:

ψu(x, µ, t) = ψl(µ, t) exp

{
−
∫ x

0

1

v(x′, t) + µc

(
∂v

∂x′
(x′, t) + cΣa(x′, T (x′, t))

)
dx′
}

(80)

The last equation is the solution for the uncollided photon flux traveling through a fluid with velocity
field v(x, t) in a 1D semi-infinite geometry. An interesting remark to consider is that if µc � v, the

27

solution above takes the form of the solution for the uncollided flux traveling through a stationary, fixed
material:

ψu(x, µ, t) = ψl(µ, t) exp

{
−
∫ x

0

Σa(x′, T (x′, t))
1

µ
dx′
}

As an example, let ψl(µ, t) = ψ0δ(µ − 1). This represents the case of a normally incident photon
beam on a material surface. The uncollided radiative energy density and uncollided radiative flux are:

Eu =
1

c
ψ0 exp

{
−
∫ x

0

1

v(x′, t) + c

(
∂v

∂x′
(x′, t) + cΣa(x′, T (x′, t))

)
dx′
}

(81)

Fu = cEuex (82)

where ex is the unit vector in the x direction.

Now let’s turn our attention to the emitted radiation field. As done previously, we adopt the diffusion
approximation for the emitted radiation field. Hence, we provide the closures:

Fe = − c

3Σa
∇Ee Pe =

1

3
Ee1

The last closures are inserted into equations (73-76). Since only the 1D problem is treated in this
work, the resulting equations are the following:

∂

∂t
(ρv) +

∂

∂x
(ρv2) = − ∂

∂x
P − 1

3

∂

∂x
Ee +

1

c
ΣaFu (83)

∂

∂t
(ρe) +

∂

∂x
(ρev) = −P ∂v

∂x
+ Σac

{
Ee + Eu − aT 4

}
(84)

∂

∂t
Ee −

∂

∂x

1

3Σ(x, T)

∂

∂x
Ee +

4

3

∂

∂x
(Eev) = Σac

{
aT 4 − Ee

}
+

1

3
v
∂Ee
∂x

(85)

These equations can be then put to Lagrangian form by using the continuity equation (68). Hence,
the complete system of equations is:

ρ
D

Dt
v = − ∂

∂x
P − 1

3

∂

∂x
Ee +

1

c
ΣaFu (86)

ρ
D

Dt
e = −P ∂v

∂x
+ Σac

{
Ee + Eu − aT 4

}
(87)

ρ
D

Dt
(
Ee
ρ

)− ∂

∂x

1

3Σ(x, T)

∂

∂x
Ee = +Σac

{
aT 4 − Ee

}
− 1

3
Ee

∂v

∂x
(88)

together with equations (81-82) for the uncollided radiation field.

The team hopes that these equations could be implemented into the Exa-Flag testbed in order to test
the validity and advantages of the “Hybrid Stationary Method” in a radiation-hydrodynamics context.
Additional research on the implementation of the other methods described in Section 8 will be performed
in the future.

28

11 Conclusions and Future Work

In this work, boundary physics of thermal radiation transport were investigated using full-transport
methods and high-fidelity diffusion methods. In the first part of this work, the physics at a material
interface was characterized using a large-scale parameter scan. With the insight gained from these
studies, different diffusion-based methods were developed in order to improve conventional diffusion
predictions.

These methods were divided into two categories: the first one was based on empirical methods and
the second one was based on analytic methods. The first method used the information obtained in the
parameter scans to develop a surrogate source term that would improve the diffusion solution to be
closer to the transport prediction. The second category of methods were based on analytic, physical
models that have not been yet applied to thermal radiation transport. While the results of the surrogate
method were closer to the transport results, it is constrained by the parameter scan on which it is based.
The analytic models are more general; however their results are not as close to the transport solution
but still capture the main “transport effects”.

Future work may include the implementation of the above methods into a radiation hydrodynamics
calculation. The team hopes that the material hydrodynamic predictions will be improved by the
developed diffusion methods, which can capture the “transport effects” at the material interfaces.

29

References

[1] G. Allaire and F. Golse. Transport et Diffusion. Ecole Polytechnique, Paris, 2012.

[2] G.C. Pomraning B.D. Ganapol. The non-equilibrium marshak wave problem: A transport theory
solution. Journal of Quantitative Spectroscopy and Radiative Transfer, 29:311–320, 1983.

[3] K. G. Budge. A Users’ Guide to the Serrano Testbed. Los Alamos National Lab.

[4] Keneth Case. Recent developments in neutron transport theory. The University of Michigan, 1961.

[5] John Castor. Radiation Hydrodynamics. Lawrence Livermore National Laboratory, California,
2003.

[6] G.C. Pomraning C.D. Levermore. A flux-limited diffusion theory. Astrophys. J., 248:321, 1981.

[7] G.L. Olson D.A. Knoll, W.J. Rider. An efficient nonlinear solution method for non-equilibrium
radiation diffusion. J. Quant. Spect. Rad. Trans., 63:15, 1999.

[8] C. Baldwin et al. Iterative linear solvers in a 2d radiation-hydrodynamics code: methods and
performance. J. Comput. Phys., 154:1, 1999.

[9] R.C. Haskell et al. Boundary conditions for the diffusion equation in radiative transfer. JOSA A,
16,10:2727–2741, 1994.

[10] J. A. Fleck and J. D. Cummings. An implicit monte carlo scheme for calculating time and frequency
dependent nonlinear radiation transport. J. Comp. Phys., 8:313–342, 1971.

[11] S. Glasstone G.I. Bell. Nuclear Reactor Theory. Krieger Publishing, Florida, 1985.

[12] G.J. Habetler and B.J. Matkowsky. Uniform asymptotic expansions in transport theory with small
mean free paths, and the diffusion approximation. Journal of Mathematical Physics, 16:846, 1975.

[13] C. Hauck and R. McClarren. A collision-based hybrid method for time dependent, linear, kinetic
transport equations. to be published.

[14] F. W. Brinkley K.D. Lathrop and Rood P. Theory and use of the spherical harmonics, first collision
source, and variable weight versions of the twotran transport program. Technical Report LA-4600,
1972.

[15] R. G. McClarren and T. J. Urbatsch. A modified implicit monte carlo method for time-dependent
radiative transfer with adaptive material coupling. J. Comp. Phys., 228:5669–5686, 2009.

[16] D. Mihalas and B. Weibel-Mihalas. Foundation of Radiation Hydrodynamics. Oxford University
Press, 1984.

[17] G.C. Pomraning. The non-equilibrium marshak wave problem. Journal of Quantitative Spectroscopy
and Radiative Transfer, 21:249–261, 1979.

[18] G.C. Pomraning. Radiation hydrodynamics. Technical Report LA-UR-82-2625, 1982.

[19] Arthur Forster Guy Ledanois Raymond Alcouffe, Robert Dautray and B. Mercier. In Monte-Carlo
Methods and Applications in Neutronics, Photonics and Statistical Physics, volume volume 240 of
Lecture Notes in Physics. Springer Berlin / Heidelberg, Florida, 1985.

30

[20] O’Dell R.D R.E Alcouffe and F. W. Brinkley Jr. A first collision source method that satisfies
discrete sn transport balance. Technical Report LA-UR-89-304, 1989.

[21] G.C. Pomraning R.H. Szilard. Numerical transport and diffusion methods in radiative transfer.
Nucl. Sci. Eng., 112:256, 1992.

[22] Thomas A. Brunner Ryan G. McClarren, James Paul Holloway. Analytic solutions for time-
dependent, thermal radiative transfer in several geometries. Journal of Quantitative Spectroscopy
and Radiative Transfer, 109:389–403, 2008.

[23] T. J. Urbatsch and T. M. Evans. Milagro Version 2, An Implicit Monte Carlo Code for Thermal
Radiative Transfer: Capabilities, Development, and Usage. Los Alamos National Lab La-14195-MS,
2005.

31

2013 Computational Physics Student Summer Workshop: Final Reports

Accelerating a Metropolis Random
Walk and Immersion-Method Saddle-

Point Algorithms

(Peter Moller, mentor)

A  M   
   

   

J W†

School of Physics and Astronomy
University of Minnesota

Minneapolis, MN
willmert@physics.umn.edu

K T†

Bredesen Center for Interdisciplinary
Research and Graduate Education
University of Tennesse–Knoxville

Knoxville, TN
ktalley5@utk.edu

   

P M
Nuclear & Particle Physics, Astrophysics & Cosmology, Group T-2

Los Alamos National Laboratory
Los Alamos, NM

moller@lanl.gov

  

L A N L’*
C P S S W

Sponsored by LANL’s Advanced Scientific Computing Program

A

In this paper we present an analysis of and improvements on the Möller et al. [8] utility used to simulate the fission-
fragment charge yield distributions by the Metropolis method. Due to particular energy-surface properties, particularly
as mass decreases, the random-walk procedure could wander for very long tracks and required prohibitively long run
times to collect sufficient statistics. Our work has decreased the execution time by taking advantage of parallelization
available to symmetric multiprocessing (SMP) systems exposed through the standard OpenMP language extensions
and libraries [13]. Because of the intrinsic parallelizability of the random walk, our efforts have demonstrated that
nearly linear speedups with the number of processors are possible within certain critical sections of the algorithm. e
same code modernization and application of OpenMP constructs has consequently also resulted in a greatly accelerated
minima search and associated saddle-point determination. Important for future work, the parallelization effort has
resulted in modular code which can more easily be reused than the original monolithic program.

*Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S.
Department of Energy under contract DE-AC52-06NA25396.

†Also Nuclear & Particle Physics, Astrophysics & Cosmology, Group T-2

1 Introduction

High-performance computing has permied many advances in all branches of physics including the the-
oretical work being done in nuclear physics. In the past, relatively simple models existed for calculating
the energy of a ground-state nucleus by using the liquid-drop model. As computing capabilities have
increased, though, so has the complexity—and maybe more importantly the associated computational
costs—of the models. One such model is the macroscopic-microscopic model used to calculate nuclear
parameters for a wide variety of shapes. Comparing the charge/mass distribution and associated asymme-
tries, such as in the particular case of 188Hg, proves the efficacy of this model and therefore the utility of
such computations. An important goal beyond the theoretical work to generate these models is then to
implement them in computationally efficient algorithms.

2 Mass models

A naïve aempt at calculating the masses of nuclei would simply sum the total masses of all protons
neutrons, and while this will provide a reasonable first estimate, detailed predictions are sensitive to the
inaccuracies inherent in this method. e issue stems from Einstein’s energy-mass relation wherein the
(negative) binding energy, which can be both theoretically and computationally difficult, has important
consequences on the mass and on other important properties of the nucleus. An improved technique
might aempt a full quantum-mechanical calculation of the mass, but because the nature of the strong
force makes the requisite quantum chromodynamics calculations computationally impractical if not
impossible, mass models are of critical importance to the study of nuclear interactions. Since masses can
experimentally be measured with high precision, this allows mass to be a valuable instrument for testing
various models. In the following sections, we review several important milestones in the mass models
that ultimately lead to the specific model used in our calculations, the macroscopic-microscopic model
(§2.5).

2.1 Liquid drop model

One of the first successful mass models utilized was the liquid-drop model (LDM). It was developed
before the discovery and description of the strong force, and therefore it is a purely phenomenological
model constructed from the paerns seen in experimental data [2]. Experiments show that the nucleon
density is nearly constant, proportional to the nucleon number 𝐴. is naturally led to a description of
nucleons as an incompressible fluid with associated volume (𝐴) and surface (𝐴2/3) interaction terms. e
volume term is the aractive term due to the mutual binding between nucleons while the surface term is
a repulsive correction term because the surface nucleons have fewer neighbors than the interior nucleons.
Finally, protons repel one another due to the Coulomb interaction, which is repulsive and gives rise to a
term proportional to 𝑍2 ⋅ 𝐴−1/3.

Further corrections to the classical model can be included from quantum mechanics. An asymmetry
term accounts for the energy balance involving the neutron excess, and the particular form for the term
shown below (coefficient 𝑎𝐴) can be derived from considering the nucleus to be a two-fluid Fermi gas
and keeping the first-order expansion term of the kinetic energy [10]. (In fact, the zeroth-order expansion
term reproduces the volume term, confirming it as an appropriate choice.) e final term is the pairing
term (𝛿 ⋅ 𝐴−1/2) which accounts for the observation that nuclei have increased stability when they have
even numbers of protons and/or neutrons, interpreted as having complete spin pairs. ese two additional
quantum terms together with the classical terms produce the Bethe-Weizäcker or semi-empirical mass

2

formula:

𝑀(𝐴, 𝑍) = 𝑍𝑚𝑃 + (𝐴 − 𝑍) 𝑚𝑁 − 𝐸𝐵
𝑐2 (1)

where

𝐸𝐵 = 𝑎𝑉 𝐴 + 𝑎𝑆𝐴2/3 + 𝑎𝐶
𝑍2

𝐴1/3 + 𝑎𝐴
(𝐴 − 2𝑍)2

4𝐴 + 𝛿
𝐴1/2 (2)

e coefficients (𝑎𝑉 , 𝑎𝑆 , 𝑎𝐶 , and 𝑎𝐴) are fied constants over a range of nuclei while 𝛿 is fit separately for
nuclei with even-even, even-odd, or odd-odd proton/neutron numbers.

Both the LDM and semi-empirical mass models as presented assume spherical (typically ground
state) nuclei. For excited nuclei—and of particular interest, nuclei undergoing fission—the nucleus can be
deformed. Appropriate modification of the classical terms in Eq. 2 can account for an ellipsoidal nucleus;
we instead discuss shape corrections in the context of the macroscopic-microscopic model in §2.3, but
further discussion of the Weizäcker formula can be found in Povh et al. [10, §3.3] or Das and Ferbel [2,
§5.2.1].

2.2 Shell model

In contrast to the LDM macroscopic interpretation, shell models use a microscopic view as that of
independent particles moving within a nuclear potential, and the associated single-particle orbitals are
solved quantum mechanically. Because the nucleus is not a dense system—the ratio of the closest packed
volume of the nucleus to the actual volume is ≈1/100—nucleon-nucleon forces deviate very lile from a
mean effective potential [11, §2.1]. us the nucleus can be considered as made up of these independent
particle states and solved in a manner analogous to the idea of the Hartree-Fock potential of the atom.
Also like the electron in the atom, the single-particle solutions have degenerate states that lead to
distinct shells. ese shells (the magic numbers) serve as the basis for further corrections to the binding
energy, particularly in the Strutinsky method, in a manner parallel to the use of the noble gases for
calculating ionization energies. e shell model theory is extensive, and as such, we refer the reader to
Ring and Schuck [11] or Wong [16] for a more complete discussion. We instead move on to introduce the
deformation which is instrumental in constructing the introductory macroscopic-microscopic model.

2.3 Deformation

Light nuclei are almost always spherical due to the nuclear force, but massive nuclei have a more detailed
energy balance. e Coulomb force grows more powerful as 𝑍 increases, and since Coulomb forces are
inversely proportional to the square of the distance, the most bound states result by puing protons as far
away from one another as possible. Because nuclear volume is invariant, though, the shape must change.
Adding the saturation property which leads to further decreases in binding energy per nucleon for higher
𝐴, the interplay between these forces may favor a non-spherical shape.

In particular, nuclei are spherical at closed shells (magic numbers), but as nuclei progress from one
major shell to another they transition through prolate shapes (elongated along the 𝑧-axis) and then oblate
shapes (flaened at the poles) as they approach the next major shell. e reason for this preference in
shape is discussed in detail in Wong [16, Ch. 6]. e shape of the nuclei can be reasonably expected to
change the distribution of the individual nucleons and as such will change the overall binding energy.
Each shape corresponds to a distribution of nucleons that influence the nuclear binding energy considered
in the calculations of the macroscopic-microscopic model (§2.5).

3

Figure 1: A schematic showing the nuclear levels in the shell
model for protons and neutrons with the spin-orbit coupling
included. Note the occurrence of magic numbers which corre-
spond to particularly stable configurations. From Povh et al.
[10].

Q2

45 Q2 ~ Elongation (fission direction)

35 αg ~ (M1-M2)/(M1+M2) Mass asymmetry

15 ε
f1

~ Left fragment deformation

ε
f1

ε
f2

15 ε
f2

~ Right fragment deformation

15
⊗

⊗

⊗

⊗

d ~ Neck

d

Five Essential Fission Shape Coordinates

M1 M2

⇒ 5 315 625 grid points − 306 300 unphysical points

⇒ 5 009 325 physical grid points

Figure 2: In the Möller et al. [8] presentation, five physical
quantities parameterize the shape and energy of the nuclei.
Each quantity can be related to the macroscopic-microscopic
parameters typically found in the literature. Note that there
are 306,400 unphysical points in the model that are included
strictly for computational purposes. From Möller et al. [8].

2.4 Strutinsky method

Neither the liquid-drop model nor the shell model are independently capable of accurately calculating the
binding and mass energy of all nuclei. e liquid-drop model captures the bulk trend but cannot accurately
describe individual nuclei. In contrast, the shell model can calculate the properties of magic nuclei well,
but fails to predict the bulk properties. In order to span the gap between both models, Strutinsky created
a shell correction procedure which retains the working qualities of both models [12]. It reproduces the
experimental ground-state energies as well as their dependence on deformation parameters.

e Strutinksy method deals with the fact that the nuclear binding energy has oscillations from the
LDM model due to shell closures. e oscillatory nature of the binding energy between shells has its
maximum at the shell closures (i.e. magic numbers: 2, 8, 20, 50 …). In the shell model one would calculate
the energy by including this oscillatory part plus an “average” level density, however, this average was
wrong. Strutinsky instead replaced it with the LDM energy while still keeping the fluctuating part from
the shell model. More details of how the oscillatory energy can be extracted from the shell model are
found in Strutinsky’s paper [12].

2.5 Macroscopic-microscopic model

e macroscopic-microscopic model uses smooth trends from a macroscopic model and local variations
from a microscopic model in order to calculate global properties. e total potential energy—dependent
upon 𝑍 , 𝑁 , and various shape parameters—is the sum of these macroscopic and microscopic terms.

𝐸pot (𝑍, 𝑁, shape) = 𝐸macro(𝑍, 𝑁, shape) + 𝐸micro(𝑍, 𝑁, shape) (3)

4

0

2

4

6

8

Quadrupole Moment q
2

−0
.3
−0
.2
−0
.1

0.
0

0.
1

0.
2

0.
3

M
as
s
As
ym
m
et
ry
α g

0
5

10

Po
te
nt
ia
lE
ne
rg
y
(M
eV
)

236
U

Figure 3: Two-dimensional surface projection of the five-dimensional potential-energy surface used. Key features such as
minima, saddle-points (red crosses), ridges, and valleys have been captured in this projection. From Ichikawa et al. [6].

For a specific nucleus, the macroscopic term corresponds to the LDM energy, and the microscopic term
is determined by the following prescription. (1) A shape is prescribed using all five parameters given in
Fig 2. (2) A single-particle potential with this shape is generated, including the spin-orbit term. (3) e
Schrödinger equation is solved for this deformed potential, generating the corresponding single-potential
levels and wave functions. (4) e shell correction is calculated by use of the Strutinsky method. (5)
Finally, the pairing correction is calculated in the BCS or Lipkin-Nogami method. By this method, the
energy hypersurface can be computed for each of the 5 million shapes. A full description of the calculation
can be found in Möller et al. [8, 9].

is energy surface—such as is shown in Fig. 3 in a two-dimensional projection of the full five-
dimensional surface—is then used as the base for the Metropolis method (discussed in §4) that calculates
various properties about the fission of a selected nuclei. is energy surface can be used to search for
minima and saddle points as well, both important features that are used to compute further properties of
nuclear fission.

3 Saddles in multiple dimensions

Barrier energies provide powerful criterion on transitions in many physical systems, including nuclear
deformations. It is important, then, to calculate the barrier energy from the data contained within the
energy hypersurface. Computationally this corresponds to finding the saddle-point between a given pair
of minima or a minimum and the fissioned (or scissioned) state. ese saddle-points correspond to the
critical deformation of the nucleus at which the nucleus will be irreversibly commied to fission. It is
important to note that there are many saddle-points on such a hypersurface. However, the points of
interest are those that correspond to barriers. Möller et al. [8] discuss at length how the typical path-
minimization methods for determining saddles between minima in multiple dimensions is insufficient and
can produce incorrect or misleading results. We have assumed the use of the immersion method which

5

Möller et al. argue is the correct strategy, but an interested reader can refer to their paper for a discussion
on the pitfalls of the path-minimization methods. We first begin by introducing the immersion method in
a concrete, physical example and describe the Möller et al. implementation specifically in §5.2.1.

3.1 Immersion method

e immersion method for determining saddle-points is described in an easily accessible way by Hayes
[5]. He presents the method in the context of solving the continental divide problem, namely, how does
one determine the location of the continental divide? In a single-dimensional landscape, the problem is
trivial with the divide defined by the maximum value along the axis. Already in two dimensions, though,
the maximum on the height gives a clearly incorrect answer; in an example using North America as the
prototype for a two-dimensional surface, Hayes gives the example that “when you search out the highest
point in the lower 48 states, you find yourself atop Mount Whitney, in California, elevation 4,418 meters.
But Mount Whitney is nowhere near the continental divide.” A second method Hayes considered was to
classify each point by the features of its 4 cardinal neighbors—whether a neighbor is higher or lower—and
follow a continuous ridge across the continent. He concluded, though, that the 81 combinations in 16
classes of configurations was an untenable idea. In our case, the situation is drastically worse. Having
242 nearest neighbors in five dimensions leads to an incredible 2.9 ⋅ 10115 configurations! Considering
the problem further, he concluded that purely local methods are insufficient to determine an intrinsically
non-local feature.

e solution as Hayes and others—particularly in geography and topography—have made use of
(see Vincent and Soille [15]) is to instead perform a global operation and raise the sea level. e
continental divide is then simply the line where the Pacific and Atlantic Oceans’ waters meet without
mixing. Digitally this can be achieved by keeping track of which locations are dry and which are wet,
incrementally increasing the water level on both sides at equal rates.

4 Metropolis random walk

e Metropolis random walk is a Markov chain Monte Carlo method for producing a random walk
through the potential-energy hypersurface. A pictorial analogy is that of a drunk man walking around
with his path more favorably choosing some directions over others due to topographical features such
as hills or valleys. e drunk man is more likely to move down the hill than up it, but there is still a
chance that he will climb it. In a similar manner, we simulate the shape evolution of a nucleus by having
it “walk” through the potential-energy hypersurface. We initialize the algorithm by starting the walk at a
minimum with a given excitation energy above the surface, and evolve the shape according to a simple
algorithm until scission occurs: (1) Choose a neighboring cell at random, corresponding to an incremental
shape change. (2) If the new shape has a lower energy than the current shape, immediately walk to the
cell. (3) Otherwise, step to the new cell only with a probability equal to a Boltzmann-like factor from the
energy difference and an effective temperature. (4) Check whether the neck radius is compatible with a
scissioned state. If so, the algorithm is finished and the final shape parameters are recorded, otherwise
the process repeats for another step in the Metropolis random-walk path.

A single Metropolis random walk is insufficient to provide insights into the dynamics, so an en-
semble of paths are collected. From the ensemble of results, various properties such as the mass/charge
distributions of the decay of nuclei can be predicted. Confidence in the conclusions drawn requires
sufficiently large statistics, and because the procedure must be run for thousands of nuclei, producing a
computationally efficient implementation of the Metropolis random walk is important to active research
goals.

6

5 Implementation

We have made an aempt to follow Donald Knuth’s advice as stated in his popular quotation, “We should
forget about small efficiencies, say about 97% of the time: premature optimization is the root of all evil”
[7]. Our improvement efforts were directed by the results that were collected from various performance
analyzers. We did this for two primary reasons. First, the time we had to complete our work was limited,
so we could not afford to waste our time with “optimizations” which later proved to be ineffective. Second,
highly optimized code oen looks very different than its unoptimized form, usually at the expense of
readability. Just for the sake of maintaining easily understandable and maintainable code it is important
to avoid unnecessarily obfuscating the code.

For example, an early preliminary idea of what caused the original algorithm implementations to
perform poorly was poor cache use. e common solution to such a problem is to change the data
storage model to be more cache-friendly. ese data structures, though, are oen very complex and
using them directly in algorithm implementations is nontrivial and error prone. In a language like
C++, powerful template metaprogramming techniques can be used to abstract the data structure so
that a simple interface is presented while simultaneously mitigating the run-time cost through compile-
time optimizations. Fortran does not have the capacity for the same type of compile-time optimized
metaprogramming, so we would have had to choose between using an error-prone direct implementation
(thereby increasing the debugging time) or sacrificing some performance to build and use an abstract
interface. Furthermore, Fortran’s lack of an extensive standard libraries (like C++’s STL or Boost) on top
of which to build more complex data structures and algorithms would have required writing the basic
building blocks from scratch, greatly increasing the implementation time.

Our first goal was to transform the original serial implementation of the random walk into one
that could run individual walks in parallel, but before parallelization constructs could be used, the
existing code needed to be updated and cleaned. e reasons will be discussed in §5.1. In the process
of updating the random-walk code, several reusable sections of code made the reimplementation of the
saddle-point algorithm convenient, and several algorithmic changes we introduced will be discussed in
§5.2. roughout this process we made use of two performance analysis tools: the GNU Project’s gprof
[4] and Valgrind’s cachegrind tool [14]. Because the outputs from both programs tend to be long, we do
not present the results and analysis inline and have instead placed the discussions in Appendices A.1 and
A.2. We also explored the use of the Tuning and Analysis Utilities (TAU) [3] which makes use of hardware
counters available on many modern architectures. Configuration problems and associated complications
made this method of analysis ineffectual within our time table and did not factor into our analysis. As a
consequence, TAU will not be further discussed here, but it presents a promising task for a future project
to expand upon the analysis we have already performed.

5.1 Updating the code base

e first stage in implementing parallelization features into the random walk and saddle determination
algorithms was to update the code base from FORTRAN77 to Fortran 95. e original FORTRAN77 code
was not structured in a way that allowed for the use of OpenMP [13], our choice of parallelization
technology. Another motivation for the modernization was to create a self-consistent soware package.
We were provided the complete FORTRAN77 source for random walk routines from Peter Möller and
code snippets for reusable routines such as routines to load the data from disk, but we were independently
implementing the saddle-point algorithms from scratch. To make best use of our time, we preferred a
consistent coding style and set language features.

e first stage of changes focused solely on updating the syntax from FORTRAN77 style to Fortran
95. ese changes included moving away from the fixed column layout to free form so that logical

7

code blocks could follow a consistent indentation style, replacing use of labeled CONTINUE statements
with equivalent end do or end if block constructs, and converting extensive use of GOTO statements
with if/else pairs. An ongoing effort began at this stage as well to explicitly declare all variables
rather than using implicit typing. Requiring explicit variable declarations aided development by enabling
compile-time warning and error messages that were capable of catching more type mismatches or unused
variables, greatly helping the cleanup effort. Because the code had to be disentangled, though, oen the
implicit none feature could not be enabled for a procedure or module until several more stages of our
code updates had also been completed.

e next stage of development was to extract the monolithic code base into independent modules.
ere are several procedures which were reused in every application, but the original implementation
used a copy-paste methodology for providing the necessary routines. Modules also have the advantage
that an application programming interface (API) can be generated which declares public interfaces and
hides routines intended for internal use only. e utility of this strategy is demonstrated by example
of the routines used to load the matrix data from disk. e data is stored as ASCII (plain text) values,
and the original loading routine provided an interface to read the data and arrange it into the five
dimensional matrix that is used in subsequent calculations. Parsing the ASCII, though, is a slow process;
binary files can be loaded into memory in a fraction of the time, but they also pose a portability problem
(data alignment, endianness, etc). We introduced two new specialized methods to load either the original
ASCII data which is guaranteed to be portable or load a binary dump of the in-memory matrix that
may be compiler, architecture, or Fortran version dependent. e original interface was then used to
automatically load the binary cache of the data if it existed or read the ASCII file and generate a cache
file for the next use. In this way, all programs compiled against the module automatically gained a new
feature without requiring any additional work.

e final major stage of code cleanup was to replace extensive use of COMMON blocks to share data
between procedures with explicit passing in procedure calls with user-defined derived types. In addition
to improving code readability by making possible side-effects more obvious, the step was also critical
to adding OpenMP support. COMMON block require that the OpenMP scope (such as threadprivate
or shared) be declared at every usage. is is error-prone since any missing update could lead to both
compile-time and run-time errors. With derived types, though, a variable must only declare its scope once
where the parallelization instructions are used. Subsequent use of the data in calling child procedures
automatically make use of the correct data, whether that be a local thread copy or a shared global
resource.

5.1.1 Parallelization with OpenMP

e large effort necessary to update or rewrite code was rewarded through the simplicity with which
parallelization was added using the OpenMP framework. In an ideal situation, parallelizing a loop without
OpenMP directives would effect no extra changes to the code. In more realistic situations, though, some
shared state typically needs careful consideration and possibly specialized code. Keeping special cases to
a minimum, though, helps ensure that the program output and behavior is identical whether run serially
or in parallel on an SMP system. In Fortran, OpenMP declarations are added as comment lines with a
special syntax that instructs an OpenMP-aware compiler while simultaneously maintaining compatibility
with OpenMP-ignorant compilers.

We added !$OMP PARALLEL DO statements surrounding two so-called hot loops—critical loops that
consume the majority of computational resources: one in the random walk algorithm and one in the
virtual flooding used to identify saddle points. In the random-walk algorithm, we parallelized over
multiple paths. e act of a random walk is completely dependent on its history so an individual path
cannot split into multiple work units. We were interested in generating an ensemble of paths, though,

8

and since every path is inherently independent from any other, it is almost a prototype for parallelizable
algorithms; only a small amount of end-state data must be collated across all paths. In the flooding
algorithm, a complete and coherent flood map is required prior to expanding the flood, so parallelizing
must be restricted to a single step, where a single step is defined as growing the flood to only its nearest
neighbors (subject to energy constraints). Utilizing the popular idea of double-buffering from computer
graphics, though, each individual step can be parallelized across the examination of the greater than five
million elements in the flood map and energy matrices. Given an input flood map, a parallelized flooding
step can iterate across all cells in the matrix, examining each cell’s nearest neighbors in the input map,
and outpuing any changes to a different output map. is guarantees that all threads see the same input
state no maer in which order the map is updated.

A few modifications required to have the OpenMP parallelization function properly are of note: (1)
large stack-allocated variables must be avoided, and (2) we swapped out the original random number
generator for that used in the Monte Carlo N-Particle Transport Code version 5 (MCNP5) soware
package [1].

Stack variables pose problems for OpenMP parallelized code because the program stack can quickly be
exhausted, leading to segmentation-fault errors. is is because every instance of the procedure running
in parallel requires its own copy of stack variables, so the memory requirements scale with the number
of processors. e simple fix for this is to make use of dynamically allocated memory that is carved out
of the heap. e heap is typically much larger than the stack, and can grow dynamically even larger if
necessary. e downside is that extra effort is required to release the memory appropriately to avoid leaks
that consume extra resources.

We switched to the MCNP5 random number generator because the original generator was incompati-
ble with running in parallel. First, time would have been required to properly protect common blocks and
global variables for use in parallel code. Doing so would have been possible, but without a skip-ahead
procedure, the effort would have been wasted. A critical goal of parallel algorithms is to produce identical
results no maer how many threads are used during execution. In an algorithm that makes use of random
number sequences, this means that a particular identifiable part of the problem should start from a
definite location in the pseudo-random number sequence. e original generator could only accomplish
a skip ahead by generating every value in the intermediate sequence, a very costly process. In contrast,
the MCNP5 generator, because it was designed to be used in a parallel code, was created with an efficient
skip ahead procedure; only a few algebraic operations are required to skip to any arbitrary location in the
sequence. We made use of this feature to produce identical results whether our code was run on a single
processor or sixteen.

In addition to adding parallelization to the flooding process, several algorithmic changes were imple-
mented. ese changes will be discussed in the following section before we return in §6 to present the
run-time performance gains we measured.

5.2 Algorithmic updates

As part of an introductory exercise to the code base and methods, our mentor tasked us with implement-
ing our own version of the minima identification and saddle-point determination algorithms. Fruitfully,
this effort provided more than just an educational exercise: it also resulted in several enhancements to
the algorithm over the original implementation. We were provided high-level, abstract descriptions of
the algorithm, but in the absence of a reference code, our approach and implementation choices were
different. In the next few sections, we outline these differences and describe how they have contributed
to our more efficient solution.

9

(a) (b)

Figure 4: A simplified comparison of the original and new flooding algorithms implemented for saddle determination. (a) In the
single-flooding algorithm, only one of the minima are made wet. e flood is stepped successively higher until it floods over
the top of the saddle point, and then it must flow down until the second minimum is detected as having been made wet. (b) For
simultaneous flooding, both minima are initialized as wet, but with two different, distinguishable floods. e lower minimum’s
flood is raised individually until at the same level with the higher, and then the process progresses such that both floods are
always at the same elevation. Both are raised until the floods collide at the saddle point.

5.2.1 Original Möller et al. implementation

Möller et al. search for the saddle point between two minima labeled the entry and exit points. An
auxiliary matrix is created which associates a property of “wetness” with each cell in the original energy
matrix. is auxiliary matrix—which we refer to as the flood map—tracks the virtual flood used in the
immersion method. ey begin by seing only the entry point to be wet in an otherwise completely dry
flood map. e flood is expanded by repeatedly processing every cell in the flood map. A particular cell is
made wet if it simultaneously has a corresponding energy less than a given threshold and has a neighbor
which is already wet. ey choose the initial threshold to be 1MeV above the entry point’s energy. e
flood is expanded until either an iteration where no changes are made in the flood map occurs—signaling
that the flood has expanded as far as is permied by the energy surface and the threshold limit—or the
exit point becomes wet. In the former case, the exit point is examined to determine whether it is wet. If
it is not then the threshold was lower than the saddle energy between the entry and exit points, and the
threshold can define a lower bound on the saddle energy. e threshold is then incremented by another
1MeV, and the process is repeated. If instead the exit point is wet, then the threshold is an upper bound
on the saddle energy. Together the lower and upper bounds define an interval within which the saddle
energy must exist. e saddle energy can be defined to a desired precision by continually decreasing the
increment size from the initial 1MeV by a factor of 10 when necessary.

5.2.2 Simultaneous flooding

One of the first optimizations we made was to decrease the number of times that the entire energy
matrix had to be traversed by flooding both minima simultaneously. Möller et al. mention the possibility
of doing this by making use of two flood maps—one for each flood—but dismiss the implementation
as being needlessly complex. Rather than making use of two flood maps, though, we were able to
achieve simultaneous flooding with only a single flood map by simply identifying each flood with a
different unique integer and non-flooded cells with the zero value. In theory, this method can be used
to simultaneously flood as many minima as unique values can be stored in the map (255 for the one
byte cells currently used). Simultaneous flooding reduces the number of iterations required by avoiding
unnecessary flooding. With over 5 million cells in the matrix, shaving off iterations can rapidly save

10

computational time. Möller et al.’s method iterates until the flood map is le unchanged aer a pass over
the entire matrix. ey are then able to check when the the bound was too high or too low based on
the exit point’s “wetness”. Our implementation, though, is capable of detecting collisions between the
simultaneously expanding floods, possibly long before all eligible points have been flooded. If more than
one collision occurs, then we already know the threshold is too high and can restart the search with
a tighter bound. Additionally, we gain the ability to automatically know when the process has reached
sufficient convergence by noting when only a single collision is generated during a single pass.

5.2.3 Saddle convergence

Another small optimization came from a different choice in the convergence technique used to identify
the saddle energy. As described in §5.2.1, the Möller et al. implementation converged on the energy by
using a linearly increasing threshold with step sizes that decreased by an order of magnitude when the
algorithm detected that the energy had been overestimated. In our implementation, we instead use a
binary-search style convergence algorithm. e lower bound is set by the minima energies, but there is
no method a priori to know what the upper bound should be. We determine this upper bound by stepping
the threshold by 1MeV steps much like the Möller algorithm until the first overestimate is detected. Aer
both the lower and upper bounds have been determined, though, the process proceeds by a binary search.
e threshold is set to the midpoint between the upper and lower bounds. If the threshold is still an
overestimate, the upper bound is decreased to the threshold, and the process is repeated. If instead the
flood reaches the threshold and an entire pass results in no changes to the flood map, then the lower
bound is increased to the threshold, and the process is again repeated. is process of bisection and
flooding is continued until a single collision point is detected which indicates that the threshold is a good
estimate for the true saddle energy.

e gains measured, though, were modest at best. Raw timings of the time to complete a single saddle
determination were lower for the binary search case than when reprogrammed to make use of a linear
search like Möller et al.’s original implementation. In addition, we identified using gprof (see §A.1 for
more information) that a particularly expensive operation—creation of a backup flood map for use when
the upper bound is too high and the process needs to restart from a state before any collisions have
occurred—requires a smaller fraction of the total run time in the binary search case. On a particular test
case, the relative weights decreased from 0.20% for the linear search to 0.03% for the binary search. e
significance to overall run time is very low, though, so any future performance gains are unlikely from
exploring this particular implementation detail further.

5.2.4 Bounded-box flooding

e reason the flooding operation can be so computationally expensive is because the algorithm poten-
tially examines the more than five million cells over many complete iterations. e motivation for the
bounded box addition was to decrease the number of elements which must be examined on each element
by excluding regions which are known to be completely dry and cannot become wet in the next iteration.
Figure 5 demonstrates the method in a simplified two-dimensional case, and the method is directly ex-
panded to the five dimensions contained in our problem. When the two flood points are initialized at each
respective minimum point, the maximum and minimum extents are remembered in each dimension. e
bounding box is then defined by subtracting 1 from the minimum values and adding 1 to the maximum
values. Since the flood can only grow by a single cell into a neighbor during a single iteration, this is
sufficient to define the next maximum possible extents of the flood. e flooding algorithm must then
only loop over cells contained within the bounds of the hypercube during a given iteration. If during
the loop the flood is extended to reach a face of the bounding hypercube, the extent in that direction is

11

.

(a)

.

(b)

.

(c)

Figure 5:e three major stages in the bounding-box optimization to the immersion method for a simplified 2D example. (a) e
flood map is initialized with an appropriate bounding box. e matrix traversal starts at the top-le corner of the bounding box
and proceeds in column-major order within established bounds. (b) During traversal, cells with a wet neighbor are also made
wet within the constraints of the energy surface values (not depicted). Some expansions may cause a flood to expand into the
boundary such as at the top right. (c) e bounding box is expanded in any dimension’s limits to re-establish a single-cell border
around the outermost flooded cells. e process restarts as in (a) from the new box’s top-le cell.

pushed outward (toward zero for a minimum and toward infinity for a maximum extent) to maintain a
hypercube sufficient to contain the next iteration’s maximum possible size.

e performance gains were again modest, on the order of a few percent or less which is not to be
entirely unexpected in our limited tests upon only a couple of energy surfaces. We expect that the the
most significant gains will occur at for early steps where the flooded regions are small, especially if the
minima are located near each other in the energy surface. At further steps, the flood can spread to span
across the extent of some or all dimensions, thereby requiring a traversal of nearly every cell in the matrix
and eliminating any performance gains. In particular, the common case of locating the saddle between
the ground and scissioned states almost completely spans the elongation parameter, and therefore a large
fraction of the entire hypercube is included within the bounds already at initialization. Furthermore,
confident conclusions are only reasonable aer examining the performance change for a large number of
energy surfaces, which is goal of future studies.

6 Performance analysis

e final analysis results shown in the following subsections makes use of timers wrapped around simple
stub routines which are capable of running an isolated algorithm. is required special care to ensure that
extraneous and uninteresting processes such as loading the energy matrix or auxiliary data is excluded
from the timings by performing them before the timing begins. In all presented results, the timing gives
the average time required to complete the operation over five invocations, and the standard deviation in
times is used to the estimated statistical error. We made use of two types of timings: wall (or real) time
and CPU time. e wall time is the physical, world time that elapses between two events, as if you were
to watch a clock on the wall and note the time interval. is is in contrast to CPU time which is the sum
total of time that the processor(s) were busy in computations. On a single processor machine, the wall and
CPU times should correspond almost exactly. For SMP systems, though, CPU time will be greater than the
wall time since multiple cores were computing in parallel during the same physical time interval. Under
perfect circumstances we’d expect the wall time to be inversely related to the number of processors used
to compute the problem while maintaining constant CPU time. Because of various forms of overhead, any

12

... ..
1

.
2

.
3

.
4

.
5

.
6

.
7

.
8

.
9

.
10

.
12

.
14

.
16

.1 .

10

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Num of OpenMP threads

.

Ex
ec

ut
io
n
tim

e
[s
ec

]

.

188Hg at 𝐸∗ = 28MeV

.

. ..CPU time

. ..Wall time

. ..∝ 𝑁−0.665

. ..∝ 𝑁−1

...

..

1

.

2

.

3

.

4

.

5

.

6

.

7

.

8

.

9

.

10

.

12

.

14

.

16

.

100

.

1,000

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.

Num of OpenMP threads

.

188Hg at 𝐸∗ = 18MeV

.

. ..CPU time

. ..Wall time

. ..∝ 𝑁−0.356

. ..∝ 𝑁−1

Figure 6: Shown are the run-time performance analyses for 16 random walk paths over the 188Hg energy hypersurface for
excitation energies of 18 and 28MeV. A perfectly parallelized algorithm would be expected to have constant CPU time while
decreasing the wall time proportional to the number of OpenMP threads. Taking the lesser performance of the 18MeV case
together with the systematic zig-zag deviations in wall time, long running single paths which hold completion of the process is
a significant factor in total completion time.

real-world result will fall short of these expectations. We collected timings for both the random-walk and
saddle-search algorithms in 16 timing trials which sequentially incremented the number of processors in
use from 1 to 16.

6.1 Random walk performance

e random-walk algorithm was tested using the 188Hg energy hypersurface with excitation energies
𝐸∗ of 18MeV and 28MeV. Each trial was asked to calculate the yield distribution for 16 paths, chosen
to correspond to the number of processors available so that at maximum utilization, each processor is
assigned a single path. e results are presented in Fig. 6. In both cases, a log-log fit was generated for
the wall time and compared against a perfect 𝑁−1 response.

We see that the wall-time performance as a function of number of threads depends on the problem
context strongly; the 𝐸∗ = 28MeV case, which already required over an order of magnitude less time
than the 18MeV case when executed serially, conforms more closely to the ideal and gains a larger
speedup factor. Despite the low convergence rate of 𝑁−0.356, though, the results are promising since
188Hg represents one of the most difficult energy hypersurfaces for the Metropolis method. Furthermore,
the effects of exceptionally long paths are visible in the results. e zig-zag paern in the timings are
not a statistical artifact—the error bars show the standard deviation in timings but are almost invisible
on the plots. It is caused by one or two long running paths that continue to run on a single processor
aer all other paths have finished. Given these considerations, we expect that more well-behaved energy
hypersurfaces will achieve more consistent speedups.

Additionally, the CPU time is qualitatively well constrained to a constant; we observe small increases
in total CPU time as a function of the number of OpenMP threads, but the rise is not more than would be
reasonably expected from overhead inherent to coordinating and synchronizing additional threads.

13

...

..

1

.

2

.

3

.

4

.

5

.

6

.

7

.

8

.

9

.

10

.

12

.

14

.

16

.

10

.

2

.

20

.

.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Num of OpenMP threads

.

Ex
ec

ut
io
n
tim

e
[s
ec

]

.

Saddle search for 188Hg

.

. ..CPU time

. ..Wall time

. ..∝ 𝑁−0.690

. ..∝ 𝑁1.139

. ..∝ 𝑁−1

Figure 7: e timing results to find the saddle point between a single pair of minima. e algorithm does not scale beyond
approximately 4 processors—simultaneously the wall time hits a plateau while the CPU time increases proportional to the
number of processors. A critical boleneck, likely to be waiting on main memory, currently limits the calculation rate for the
saddle-search algorithm.

6.2 Flooding performance

Determining the saddle point for a single pair of minima in 188Hg was also performed to examine the
performance characteristics of the flooding algorithms as a function of the number of parallel threads.
e results are shown in Fig. 7, and they differ from those of the random-walk tests starkly. First, the
convergence proportional to 𝑁−0.690 only extends to about 4 or 5 processors (the first 4 points were used
in the fit) before the performance gains plateau and begin to decrease. In this case, we cannot continue to
reduce the real-world computational time by simply throwing a larger number of processing cores at the
problem.

In fact as the CPU time shows, we actually waste resources by asking that all 16 processors on our
test machine work on the task. Up through roughly the same limit where the wall time decreases, we also
see a relatively constant total CPU time. Beyond that limit where the wall-time hits a plateau, though,
we see that the CPU time increases dramatically—at a rate approximately proportional to the number
of processors in fact! e flooding algorithm makes much more demands on memory, and we suspect
that cache misses become significant and each thread begins to wait for data to be retrieved from main
memory. erefore, the most efficient use of computing resources for the saddle-finding procedure is to
utilize approximately 4 processors.

7 Future work

As occurs in any project, there are places where there is additional work to be done: (1) Previously
mentioned in §6, more reliable and accurate performance analysis can be performed by making use of
the TAU instrumentation suite to provide access to the hardware counters built into many computer
architectures. e sampling and simulation techniques used by gprof and cachegrind, respectively,
proved to be useful tools to do a broad optimization of the algorithms, but hardware counters that provide
production, run-time data may give insights into remaining performance bolenecks. In particular, more

14

advanced methods may provide further insight into the complex interactions parallelized algorithms
can have with the underlying hardware (as suggested by the saddle finding performance in Fig. 7). (2)
Extensive performance tests across a wide range of nuclei could provide further insights into bolenecks
or limitations in these updated implementations. (3) Modifications to the saddle-finding algorithm may
be possible that would allow the simultaneous identification of saddle points between multiple pairs
of minima. e current implementation finds saddle points between pairs serially. (4) Changes to the
structure of the energy matrices may lead to further enhancements. For example, eliminating the need for
the unphysical points simply for computational purposes could reduce resource requirements. Another
option would be to use a different choice of parameterizations which produce computationally favorable
energy surfaces; in particular, the flooding algorithms are sensitive to the extents of the flood, so choosing
a parameterization which preferentially constrains to a subspace could amplify the effectiveness of the
bounding boxes. (5) Alternative storage of the matrices in memory—possibly multiplexing or an as-yet
unconsidered format—could provide more efficient cache usage if point 1 can prove where this method
would be effective.

8 Acknowledgements

We’d first like to thank in general Los Alamos National Laboratory’s Advanced Scientific Computing Pro-
gram; it is responsible for generously supporting the Computational Physics Student Summer Workshop
in which we have participated. A special thank you must go to our mentor Peter Möller for his guidance
and in particular his patience as one of us (Justin) was introduced to an unfamiliar field and the other
(Kemper) who has much less coding experience. is work would also not have been possible without the
use of his code and data as a starting point. Next, a thank you to Sco Runnels for all the organizational
work done to make this workshop a success, from the application process and in-processing paperwork
to all the lectures provided for our benefit. Lastly, we want to thank all of our peers and other workshop
mentors who have provided great sounding boards against which to help refine ideas and strategies.

15

A Performance profilers

As first mentioned in §5, we made use of the gprof [4] and cachegrind [14] tools to help guide
our implementation strategies. In the following two sections we will introduce each tool, discuss the
advantages and pitfalls of each, and provide a short discussion of the conclusions we drew from an
example output.

A.1 The GNU profiler

e GNU profiler gprof is a sampling profiler. is means it interrupts the execution of the program of
interest at periodic intervals in order to record the location of execution within the program. is has
several important consequences for how a program is profiled and what conclusions can be drawn from
the resultant information.

First, because the profiler samples a running program, the collected profiling data will only reflect the
performance for a particular code path. In a complex piece of soware such as a web browser, it can be
very challenging to ensure that all code paths of interest are executed since the browser may execute very
different sections of its code based on its interaction with the user. In our case, though, both the random
walk and flooding procedures are simple, single-purpose utilities which do not have alternate modes of
usage. is means that we can be confident that our programs are being sufficiently covered to provide
representative samples. Further work is required to reach strong conclusions, though—it is known that
not all nuclei are equally computationally expensive and make unique demands on resource usage, so a
comprehensive review of many nuclei is still needed.

Second, the sampling occurs at periodic intervals which may systematically never overlap with a
particular line of code. If we were concerned with corner case performance or micro-optimizations, we
would have more reason to worry, but because we were interested in the performance of only the internal
hot loops which are executed very many times, we are not concerned with the fact that several iterations
may not be counted. e programs still spend an overwhelming fraction of their time working within the
hot loops and therefore a fair representative sample should still result.

Additionally, matching executing instructions with specific lines of original code can be inaccurate or
misleading. Without any optimizations, the machine instructions can be traced back directly to the code
that generated them, but the use of optimizing compilers can make the correspondence less accurate or
completely misleading. is is because the optimizers make use of very complex passes which can rewrite
the machine instructions in order to make best use of the available resources, but this may also meld
the code lines so that the code flow is no longer sequential. A decision must then be made. One choice
is to sacrifice program performance (and deviate from the production executable that would actually
be executed) to retain accurate code-to-instruction correspondence. e other choice uses the optimized
program at the cost of generating profile information which cannot be entirely trusted.

Finally, the sampling method only provides performance data by counting the number of times a
particular line of code is executing when the sample is taken. is provides information about where
the code is spending its time, but not why. In order to properly optimize a particular line of code, it is
necessary to know the reason for the long execution time. For example, the method for reducing the
number of cache misses in a line of code will vary greatly from the strategy used to reduce the number of
cycles required on the CPU. e output from gprof must therefore either be interpreted using heuristics
or another tool which can provide extra information, and this is the reason for also making use of
cachegrind.

16

Listing 1: A sample of the output generated by the gprof analysis tool during execution of the saddle finding utility. e particularly useful data is given in the first and last columns. e
first column shows the cumulative fraction of the time spent in executing a particular line of code. e least column then gives the file and line number of the corresponding code.

1 Flat profile:
2
3 Each sample counts as 0.01 seconds.
4 % cumulative self self total
5 time seconds seconds calls Ts/call Ts/call name
6 75.76 22.54 22.54 __moller_flooding_MOD_flood_step._omp_fn.0 (moller_flooding.f95:91 @ 401de4)
7 3.90 23.70 1.16 __moller_flooding_MOD_flood_step._omp_fn.0 (moller_flooding.f95:68 @ 401b39)
8 2.64 24.48 0.79 __moller_flooding_MOD_flood_step._omp_fn.0 (moller_flooding.f95:101 @ 401fe4)
9 2.61 25.26 0.78 __moller_flooding_MOD_flood_step._omp_fn.0 (moller_flooding.f95:71 @ 401cda)

10 2.07 25.87 0.62 __moller_flooding_MOD_flood_step._omp_fn.0 (moller_flooding.f95:65 @ 401b24)
11 1.78 26.41 0.53 __moller_flooding_MOD_flood_step._omp_fn.0 (moller_flooding.f95:62 @ 401d7b)
12 1.65 26.90 0.49 __moller_flooding_MOD_saddle_point (moller_flooding.f95:363 @ 408172)
13 1.56 27.36 0.47 __moller_flooding_MOD_flood_step._omp_fn.0 (moller_flooding.f95:91 @ 401da9)
14 1.13 27.70 0.34 __moller_flooding_MOD_flood_step._omp_fn.0 (moller_flooding.f95:91 @ 401dbc)
15 1.06 28.01 0.32 __moller_flooding_MOD_flood_step._omp_fn.0 (moller_flooding.f95:91 @ 401dd1)
16 0.99 28.31 0.30 __moller_flooding_MOD_flood_step._omp_fn.0 (moller_flooding.f95:62 @ 401dce)
17 0.84 28.56 0.25 __moller_flooding_MOD_flood_step._omp_fn.0 (moller_flooding.f95:62 @ 401db5)
18 0.44 28.69 0.13 __moller_flooding_MOD_flood_step._omp_fn.0 (moller_flooding.f95:91 @ 401dcb)
19 0.32 28.78 0.10 __moller_flooding_MOD_saddle_point (moller_flooding.f95:363 @ 40815d)
20 0.29 28.87 0.09 __moller_flooding_MOD_flood_step._omp_fn.0 (moller_flooding.f95:62 @ 401de0)
21 0.27 28.95 0.08 __moller_flooding_MOD_flood_step._omp_fn.0 (moller_flooding.f95:63 @ 401b6a)
22 0.20 29.01 0.06 __moller_flooding_MOD_flood_step._omp_fn.0 (moller_flooding.f95:88 @ 401d24)
23 0.18 29.06 0.06 __moller_flooding_MOD_flood_step._omp_fn.0 (moller_flooding.f95:62 @ 401d01)
24 0.15 29.11 0.05 __moller_flooding_MOD_flood_step._omp_fn.0 (moller_flooding.f95:88 @ 401b1d)
25 0.13 29.15 0.04 __moller_flooding_MOD_flood_step._omp_fn.0 (moller_flooding.f95:62 @ 401fe0)
26 0.13 29.19 0.04 __moller_flooding_MOD_flood_step._omp_fn.0 (moller_flooding.f95:62 @ 401fc3)
27 0.12 29.22 0.04 __moller_flooding_MOD_flood_step._omp_fn.0 (moller_flooding.f95:101 @ 401fd9)
28 0.12 29.26 0.04 __moller_flooding_MOD_saddle_point (moller_flooding.f95:287 @ 408121)
29 0.10 29.29 0.03 __moller_flooding_MOD_flood_step._omp_fn.0 (moller_flooding.f95:88 @ 401d0f)
30 0.10 29.32 0.03 __moller_flooding_MOD_flood_step._omp_fn.0 (moller_flooding.f95:62 @ 401d17)
31 0.10 29.35 0.03 __moller_flooding_MOD_flood_step._omp_fn.0 (moller_flooding.f95:91 @ 401d9a)
32 0.10 29.38 0.03 __moller_flooding_MOD_flood_step._omp_fn.0 (moller_flooding.f95:101 @ 401fb6)
33 0.10 29.41 0.03 __moller_flooding_MOD_flood_step._omp_fn.0 (moller_flooding.f95:62 @ 401fbc)
34 0.08 29.43 0.03 __moller_flooding_MOD_saddle_point (moller_flooding.f95:363 @ 408138)
35 0.07 29.45 0.02 __moller_flooding_MOD_flood_step._omp_fn.0 (moller_flooding.f95:62 @ 401c70)
36 0.07 29.47 0.02 __moller_flooding_MOD_saddle_point (moller_flooding.f95:342 @ 40802e)
37 0.07 29.49 0.02 __moller_flooding_MOD_saddle_point (moller_flooding.f95:287 @ 408141)
38 0.07 29.51 0.02 __moller_flooding_MOD_saddle_point (moller_flooding.f95:363 @ 408150)
39 0.07 29.53 0.02 __moller_flooding_MOD_saddle_point (moller_flooding.f95:287 @ 408162)
40 0.05 29.55 0.02 __moller_flooding_MOD_flood_step._omp_fn.0 (moller_flooding.f95:62 @ 401da2)
41 0.03 29.56 0.01 __moller_flooding_MOD_flood_min_pair (moller_flooding.f95:230 @ 404000)
42 0.03 29.57 0.01 __moller_flooding_MOD_flood_min_pair (moller_flooding.f95:267 @ 4043ff)
43 0.03 29.58 0.01 __moller_flooding_MOD_flood_min_pair (moller_flooding.f95:255 @ 404780)
44 0.03 29.59 0.01 __moller_flooding_MOD_flood_step._omp_fn.0 (moller_flooding.f95:62 @ 4019ba)
45 0.03 29.60 0.01 __moller_flooding_MOD_flood_step._omp_fn.0 (moller_flooding.f95:62 @ 401abe)
46 0.03 29.61 0.01 __moller_flooding_MOD_flood_step._omp_fn.0 (moller_flooding.f95:91 @ 401d5c)
47 0.03 29.62 0.01 __moller_flooding_MOD_flood_step._omp_fn.0 (moller_flooding.f95:62 @ 401d6e)
48 0.03 29.63 0.01 __moller_flooding_MOD_flood_step._omp_fn.0 (moller_flooding.f95:62 @ 401daf)
49 0.03 29.64 0.01 __moller_flooding_MOD_flood_step._omp_fn.0 (moller_flooding.f95:62 @ 401dc8)
50 0.03 29.65 0.01 __moller_flooding_MOD_flood_step._omp_fn.0 (moller_flooding.f95:94 @ 401f7f)
51 0.03 29.66 0.01 __moller_flooding_MOD_flood_step._omp_fn.0 (moller_flooding.f95:95 @ 401f87)
52 0.03 29.67 0.01 __moller_flooding_MOD_flood_step._omp_fn.0 (moller_flooding.f95:62 @ 401f9b)
53 0.03 29.68 0.01 __moller_flooding_MOD_flood_step._omp_fn.0 (moller_flooding.f95:101 @ 401fd3)
54 0.03 29.69 0.01 __moller_flooding_MOD_flood_step._omp_fn.0 (moller_flooding.f95:62 @ 401fd6)

17

55 0.03 29.70 0.01 __moller_flooding_MOD_flood_step._omp_fn.0 (moller_flooding.f95:102 @ 402281)
56 0.03 29.71 0.01 __moller_flooding_MOD_saddle_point (moller_flooding.f95:324 @ 407b63)
57 0.03 29.72 0.01 __moller_flooding_MOD_saddle_point (moller_flooding.f95:287 @ 4080fa)
58 0.03 29.73 0.01 __moller_flooding_MOD_saddle_point (moller_flooding.f95:339 @ 408441)
59 0.03 29.74 0.01 rang (mcnp_random.f95:180 @ 407b2d)
60 0.02 29.74 0.01 __moller_flooding_MOD_flood_step._omp_fn.0 (moller_flooding.f95:62 @ 401ab2)
61 0.02 29.75 0.01 __moller_flooding_MOD_flood_step._omp_fn.0 (moller_flooding.f95:88 @ 401ab9)
62 0.02 29.75 0.01 __moller_flooding_MOD_flood_step._omp_fn.0 (moller_flooding.f95:91 @ 401db2)
63 0.02 29.76 0.01 __moller_flooding_MOD_saddle_point (moller_flooding.f95:287 @ 408159)
64 0.00 29.76 0.00 112 0.00 0.00 __moller_flooding_MOD_flood_step (moller_flooding.f95:38 @ 402740)
65 0.00 29.76 0.00 89 0.00 0.00 frame_dummy
66 0.00 29.76 0.00 2 0.00 0.00 __moller_flooding_MOD_saddle_point (moller_flooding.f95:287 @ 4076c0)
67 0.00 29.76 0.00 1 0.00 0.00 __mcnp_random_MOD_rn_init_problem (mcnp_random.f95:232 @ 406ea0)
68 0.00 29.76 0.00 1 0.00 0.00 __moller_datafiles_MOD_load_tensor (moller_datafiles.f95:186 @ 406490)
69 0.00 29.76 0.00 1 0.00 0.00 __moller_datafiles_MOD_load_tensor_cache (moller_datafiles.f95:123 @ 405ce0)
70 0.00 29.76 0.00 1 0.00 0.00 __moller_flooding_MOD_flood_min_pair (moller_flooding.f95:135 @ 402980)
71
72 % the percentage of the total running time of the
73 time program used by this function.
74
75 cumulative a running sum of the number of seconds accounted
76 seconds for by this function and those listed above it.
77
78 self the number of seconds accounted for by this
79 seconds function alone. This is the major sort for this
80 listing.
81
82 calls the number of times this function was invoked , if
83 this function is profiled , else blank.
84
85 self the average number of milliseconds spent in this
86 ms/call function per call, if this function is profiled ,
87 else blank.
88
89 total the average number of milliseconds spent in this
90 ms/call function and its descendents per call, if this
91 function is profiled , else blank.
92
93 name the name of the function. This is the minor sort
94 for this listing. The index shows the location of
95 the function in the gprof listing. If the index is
96 in parenthesis it shows where it would appear in
97 the gprof listing if it were to be printed.

18

A.1.1 Program preparation & tool execution

Using gprof requires additional compile-time tooling to include extra machine instructions necessary
for collecting the samples, and therefore gprof is only suitable for analyzing programs that can be
compiled from source—embedded debug symbols in the program are insufficient. e advantage of the
compile-time tooling is that no extra effort is required to generate profiling information; only a single
compiler option must be added, and the rest of the work is performed automatically by the compiler. For
the GNU Compiler Collection (GCC), the flag -pg must be added to compilation. e resultant executable
is then profiling-enabled.

Generation of the profiling information is automatic upon execution of the program with the data
being wrien to the file gmon.out within current working directory. gmon.out is not human readable,
though, and must be post-processed to generate the output shown in Listing 1 with a command sequence
similar to

$ gprof --line flood_test gmon.out > flood_test.gprof-annotate

e sequence takes as arguments the path to the binary and profile data (here, both in the current
working directory) and emits the human readable form to the standard output (here being redirected to a
file). e extra option tells gprof that we want line-by-line annotations rather than just function totals.

A.1.2 Profile interpretation

Listing 1 shows the flat profile generated by gprof. We have enabled line-by-line counting, so most of
the output is for specific lines of code, and function totals only show up near the end of the listing. We
were most interested in the lines that account for the greatest proportion of the run time, and gprof
makes this clear for us, sorting the entries by individual percentage cost by default (the le-most column).
In Listing 1, the first line shows that the call at line 91 of moller_flooding.f95 accounts for over 75%
of the run time. Looking up the line in source, this corresponds to a search over neighbors cells in the
flooding routine for a flooded neighbor.

With a line identified, we can finally expend the time and effort to explore optimization opportunities.
e line is a critical part of the flooding algorithm, so there is not a way a trivial way to reduce the number
of times the line is executed. Further, the line is a call to a Fortran intrinsic, so we can safely assume that a
hand-wrien method would be less efficient than the code produced by the compiler and support library
maintainers. For this specific case, we identified the largest cost in the program and concluded that we
could not optimize this specific line within the time constraints and goals of our research, and therefore
moved on to other optimization efforts.

e output from gprof was used in a similar manner to help with smaller optimizations already
discussed in §5. For example, the linear vs. binary saddle convergence described in §5.2.3 was in part
analyzed by noting how the costs changed between gprof profile outputs; we identified that the number
of calls to a particularly expensive memory call were reduced in the binary search implementation over
the linear search.

A.2 Valgrind

In contrast to gprof, Valgrind is a simulation profiler which runs an interpreter to track every line as it
executes. As a consequence Valgrind will never miss an execution of a line of code, but execution time is
significantly increased. e major benefit that makes the cost worth paying, though, is that the simulator
is capable of simulating how the code interacts with any soware or hardware feature that Valgrind and
it’s plugins are capable of simulating. For cachegrind, this means that we gain the ability to simulate

19

Listing 2: At runtime, cachegrind outputs a summary of the collection information to the terminal in addition to generating
an auxiliary data file which can be analyzed later (see Listing 3). e most interesting data occurs in lines 41 and 42 which give
the cache miss rate for data-related reads and writes. We see that the rates are less than 1%, initially suggesting cache misses are
not a significant effect, but see §6.1 and §6.2 for a more complete discussion.

1 ==18642== Cachegrind , a cache and branch-prediction profiler
2 ==18642== Copyright (C) 2002-2010, and GNU GPL'd, by Nicholas Nethercote et al.
3 ==18642== Using Valgrind -3.6.0 and LibVEX; rerun with -h for copyright info
4 ==18642== Command: ./randwalk
5 ==18642==
6 --18642-- warning: Unknown Intel cache config value (0x76), ignoring
7 --18642-- warning: Unknown Intel cache config value (0xff), ignoring
8 --18642-- warning: L2 cache not installed , ignore LL results.
9 Please specify the nuclear parameters

10 Z:
11 A:
12 Enter a new value, or leave blank to accept the default.
13
14 Number of iterations to perform [50000]:
15 Set the excitation energy [6.540]:
16 Set the shell correction damping factor [60.000]:
17
18 Excitation energy (wrt ground) : 6.540 MeV.
19 Absolute ground state energy : -2.110 MeV.
20 Absolute excitation energy : 4.430 MeV.
21 EDAMP : 60.000 MeV.
22
23 All manual input has been entered. Please be patient as the random
24 walks are performed. Note that if no cache exists, reading in the
25 data files may take some time.
26
27
28 Total rnd count : 8062781
29 Mass normalization check: 199.999985
30 Charge normalization check: 200.000000
31 ==18642==
32 ==18642== I refs: 1,791,441,715
33 ==18642== I1 misses: 2,301
34 ==18642== LLi misses: 2,298
35 ==18642== I1 miss rate: 0.00%
36 ==18642== LLi miss rate: 0.00%
37 ==18642==
38 ==18642== D refs: 853,671,979 (555,202,464 rd + 298,469,515 wr)
39 ==18642== D1 misses: 4,036,351 (1,055,017 rd + 2,981,334 wr)
40 ==18642== LLd misses: 2,910,170 (3,988 rd + 2,906,182 wr)
41 ==18642== D1 miss rate: 0.4% (0.1% + 0.9%)
42 ==18642== LLd miss rate: 0.3% (0.0% + 0.9%)
43 ==18642==
44 ==18642== LL refs: 4,038,652 (1,057,318 rd + 2,981,334 wr)
45 ==18642== LL misses: 2,912,468 (6,286 rd + 2,906,182 wr)
46 ==18642== LL miss rate: 0.1% (0.0% + 0.9%)

20

Listing 3: e annotated cachegrind output. (For the run-time output summary, see Listing 2.) Performance is given in terms of intruction or data cache reads and writes per
function. Note lines 26 and 29 are two of the three most expensive operations in terms of cache misses for both read and writes, but—because they are 1-time initialization
procedures—do not factor into the most critical hot loops.

1 --
2 I1 cache: 67108864 B, 64 B, 2-way associative
3 D1 cache: 67108864 B, 64 B, 2-way associative
4 LL cache: 268435456 B, 64 B, 8-way associative
5 Command: ./randwalk
6 Data file: randwalk_test.cachegrind
7 Events recorded: Ir I1mr ILmr Dr D1mr DLmr Dw D1mw DLmw
8 Events shown: Ir I1mr ILmr Dr D1mr DLmr Dw D1mw DLmw
9 Event sort order: Ir I1mr ILmr Dr D1mr DLmr Dw D1mw DLmw

10 Thresholds: 0.1 100 100 100 100 100 100 100 100
11 Include dirs: ~/code-hg/
12 User annotated:
13 Auto-annotation: off
14
15 --
16 Ir I1mr ILmr Dr D1mr DLmr Dw D1mw DLmw
17 --
18 1,791,441,715 2,301 2,298 555,202,464 1,055,017 3,988 298,469,515 2,981,334 2,906,182 PROGRAM TOTALS
19
20 --
21 Ir I1mr ILmr Dr D1mr DLmr Dw D1mw DLmw file:function
22 --
23 501,645,738 8 8 137,148,861 223 61 56,922,291 29 0 ???:__ieee754_expf
24 240,338,562 2 2 88,545,786 0 0 63,246,990 0 0 ???:fesetenv
25 188,439,137 0 0 47,137,234 79,641 0 19,408,216 141 0 moller_randwalk.f95:__moller_randwalk_MOD_randwalk_path
26 159,558,964 0 0 60,770,911 580,005 0 22,767,659 635,989 635,976 moller_randwalk.f95:__moller_randwalk_MOD_randwalk_preload
27 145,468,077 2 2 50,597,592 4 1 25,298,796 0 0 ???:expf
28 126,493,980 3 3 63,246,990 0 0 44,272,893 13 0 ???:feholdexcept
29 113,844,582 1 1 31,623,495 0 0 25,298,796 0 0 ???:fesetround
30 74,913,240 0 0 20,351,262 390,146 0 20,351,260 1,346,412 1,271,952 moller_randwalk.f95:__moller_randwalk_MOD_reflect_mass_asymm
31 65,682,948 0 0 7,892,244 0 0 1,315,374 0 0 mcnp_random.f95:__moller_randwalk_MOD_randwalk_path
32 39,539,501 11 11 9,410,084 121 117 9,045,079 996,819 996,818 ???:memcpy
33 31,623,500 0 0 6,324,700 0 0 0 0 0 ???:finitef
34 22,960,500 1 1 4,592,151 0 0 0 0 0 ../../../gcc -4.7.0/libgomp/config/linux/wait.h:gomp_barrier_wait_end
35 21,364,660 8 8 6,581,480 0 0 2,936,456 1 1 ../../../gcc -4.7.0/libgfortran/io/transfer.c:_gfortran_transfer_array
36 14,175,000 5 5 4,252,500 0 0 2,480,625 0 0 ../../../gcc -4.7.0/libgfortran/io/transfer.c:read_block_direct
37 14,047,182 6 6 3,937,256 0 0 2,165,311 0 0 ../../../gcc -4.7.0/libgfortran/io/unix.c:buf_read
38 8,505,000 3 3 2,480,625 0 0 1,771,875 0 0 ../../../gcc -4.7.0/libgfortran/io/transfer.c:unformatted_read
39 6,710,481 134 131 6,709,517 74 4 423 2 2 ???:???
40 4,592,173 2 2 17 2 0 0 0 0 ../../../gcc -4.7.0/libgomp/config/linux/x86/futex.h:gomp_barrier_wait_end
41 2,361,330 1 1 472,296 1 0 0 0 0 ../../../gcc -4.7.0/libgomp/config/linux/wait.h:gomp_team_barrier_wait_end
42 2,126,250 2 2 1,417,500 0 0 0 0 0 ../../../gcc -4.7.0/libgfortran/io/transfer.c:iolength_transfer

21

cache memory operations, and we can estimate which code operations are causing the greatest number
of cache misses.

As another run-time tool, a couple of concerns outlined for gprof also apply to the profiles generated
by cachegrind. First, the same code path concerns apply—we cannot draw any conclusions about code
that was not executed during a particular run. Again, because our programs are single-purpose utilities,
this caveat is not a critical concern for us. Similarly, the optimization passes performed by the compiler
can also cause the correlation between machine instructions and source code to become unclear, so the
same trade-off between production-equivalent executable and accurate results must be considered.

We gain the ability for Valgrind and cachegrind to provide information about the cache performance
of our algorithms with a caveat—the simulator does not support OpenMP parallelization.e consequence
of this deficiency is demonstrated in Figure 7; the performance likely fails to increase with the number
of cores because memory and cache misses become a boleneck in the algorithm. Despite the serial
constraint, though, any poorly performing code identified in the serial case is only going to degrade as
the memory bus is stressed during simultaneous access from multiple cores.

A.2.1 Program preparation & tool execution

No special preparation is required during compile time since the program is executed in a simulator which
has access to all machine instructions, CPU, and memory internals at all times. Profiling is performed by
executing the valgrind tool, instructing it to use the cachegrind tool, and specifying the program to
profile. An example invocation may be,

$ valgrind --tool=cachegrind --cachegrind-out-file=randwalk.cachegrind \
> ./randwalk > randwalk.cachegrind-stdout

e file redirection produces the output shown in Listing 2, and use of the cg_annotate utility post-
processes the file given by --cachegrind-out-file to produce a human-readable summary:

$ cg_annotate -I~/code randwalk.cachegrind > randwalk.cachegrind-annotate

e resultant annotated, human-readable output is shown in Listing 3.

A.2.2 Profile interpretation

e easiest results to interpret are shown in lines 41 and 42 of Listing 2. ese two lines show that the
simulated cache miss rate for reads and writes is less than 1%; from this we infer that the cache miss rate
is not a significant contributor to the run time in the serial case. As has already been discussed in §6.2,
though, this interpretation is likely not correct in the parallel case, particularly on SMP systems with a
large number of cores.

More detailed information is contained within Listing 3. e sort order is by the number of instruction
reads (analogous to the call count in gprof), and we see that the exponentiation function is called the
most; note that the statistics are only for whole function calls unlike the output shown in Listing 1, and
therefore we would expect the exponential function to be called oen since it is used within the random
walk inner loop. We are most interested in examining the columns marked with mr or mw in the names;
these indicate the cache miss counts for the cache levels for both read and write operations, respectively.
Lines 26, 30, and 32 immediately stand out. Both lines 26 and 30 do not pose a significant problem since
these are both routines which must manipulate the entire energy matrix during the program initialization;
a large number of cache misses are expected as caches are populated. e memory copy in line 32 is
also expected to cause cache misses, but without further tooling and more specific profiling, we cannot
conclude what causes the copies. Memory copies which occur due to loading data from disk is of no
concern, but managing copies that occur during the random walk loop is an important task.

22

References

[1] Forrest Brown. e MCNP5 Random Number Generator. LA-UR-07-7961. Los Alamos National
Laboratory. : https://laws.lanl.gov/vhosts/mcnp.lanl.gov/pdf_files/la-ur-07-
7961_mcnp_rn.pdf (visited on 08/13/2013).

[2] Ashok Das and omas Ferbel. Introduction to Nuclear and Particle Physics. 2nd ed. World Scientific,
2009. : 978-981-238-744-8.

[3] Department of Computer and Information Science, University of Oregon. TAU Performance System.
University of Oregon, Los Alamos National Laboratory, and Research Center Jülich, July 25, 2013.
: http://www.cs.uoregon.edu/research/tau/home.php.

[4] Jay Fenlason. e GNU Profiler. e GNU Project, July 29, 2013. : http://www.gnu.org/
software/binutils/.

[5] Brian Hayes. “Dividing the Continent”. In: American Scientist 88.6 (2000), p. 481. : 10.1511/
2000.6.481. : http://www.americanscientist.org/issues/pub/2000/6/dividing-
the-continent.

[6] Takatoshi Ichikawa et al. “Contrasting fission potential-energy structure of actinides and mercury
isotopes”. In: Phys. Rev. C 86 (2 Aug. 2012), p. 024610. : 10.1103/PhysRevC.86.024610. :
http://link.aps.org/doi/10.1103/PhysRevC.86.024610.

[7] Donald E Knuth. “Structured Programming with go to Statements”. In: ACM Computing Surveys 6.4
(1974), pp. 261–301. : http://portal.acm.org/citation.cfm?doid=356635.356640.

[8] Peter Möller et al. “Heavy-element fission barriers”. In: Physical Review C 79.6 (June 2009), p. 064304.
: 10.1103/PhysRevC.79.064304. : http://link.aps.org/doi/10.1103/PhysRevC.
79.064304.

[9] Peter Möller et al. “Nuclear Ground-State Masses and Deformations”. In: Atomic Data and Nuclear
Data Tables 59.2 (Mar. 1995), pp. 185–381. : 10.1006/adnd.1995.1002. : http://dx.doi.
org/10.1006/adnd.1995.1002.

[10] Bogdan Povh et al. Particles and Nuclei. An Introduction to the Physical Concepts. Trans. from the
German by Martin Lavelle. Springer, 2008. : 978-3-540-79367-0.

[11] Peter Ring and Peter Schuck. e Nuclear Many-Body Problem. Springer, 2004. : 3-540-21206-X.
[12] Vilen Mitrofanovich Strutinsky. ““Shells” in deformed nuclei”. In: Nuclear Physics A122 (1968),

pp. 1–33.
[13] e OpenMP API specification for parallel programming. e OpenMP Architecture Review Board,

July 30, 2013. : http://www.openmp.org/.
[14] Valgrind Developers. Valgrind. July 25, 2013. : http://valgrind.org/.
[15] Luc Vincent and Pierre Soille. “Watersheds in digital spaces: an efficient algorithm based on

immersion simulations”. In: IEEE Transactions on Paern Analysis and Machine Intelligence 13.6
(1991), pp. 583–598. : 10.1109/34.87344. : http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=87344.

[16] Samuels S.M. Wong. Introductory Nuclear Physics. second. John Wiley & Sons, Inc., 1998. :
0-471-23973-9.

23

https://laws.lanl.gov/vhosts/mcnp.lanl.gov/pdf_files/la-ur-07-7961_mcnp_rn.pdf
https://laws.lanl.gov/vhosts/mcnp.lanl.gov/pdf_files/la-ur-07-7961_mcnp_rn.pdf
http://www.cs.uoregon.edu/research/tau/home.php
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://dx.doi.org/10.1511/2000.6.481
http://dx.doi.org/10.1511/2000.6.481
http://www.americanscientist.org/issues/pub/2000/6/dividing-the-continent
http://www.americanscientist.org/issues/pub/2000/6/dividing-the-continent
http://dx.doi.org/10.1103/PhysRevC.86.024610
http://link.aps.org/doi/10.1103/PhysRevC.86.024610
http://portal.acm.org/citation.cfm?doid=356635.356640
http://dx.doi.org/10.1103/PhysRevC.79.064304
http://link.aps.org/doi/10.1103/PhysRevC.79.064304
http://link.aps.org/doi/10.1103/PhysRevC.79.064304
http://dx.doi.org/10.1006/adnd.1995.1002
http://dx.doi.org/10.1006/adnd.1995.1002
http://dx.doi.org/10.1006/adnd.1995.1002
http://www.openmp.org/
http://valgrind.org/
http://dx.doi.org/10.1109/34.87344
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=87344
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=87344

2013 Computational Physics Student Summer Workshop: Final Reports

Diffusion in Mixed Cells

(William Dai, mentor)

LA-UR-13-26470
Approved for public release; distribution is unlimited.

Title: Numerical Study for Diffusion in Material Mixtures Part I: Pure
Materials

Author(s): Yeaton, Issac J.
Dai, William W.

Intended for: Computational Physics Summer Workshop, 2013-06-10/2013-08-16 (Los
Alamos, New Mexico, United States)
Report

Issued: 2013-08-15

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National
Security, LLC for the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.
By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to
publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.
Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the
U.S. Departmentof Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish;
as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Numerical Study for Diffusion in Material Mixtures

Part I: Pure Materials

Isaac J. Yeaton∗

Department of Mechanical Engineering, Virginia Tech

Mentor: William Dai†

Los Alamos National Laboratory

August 16, 2013

Abstract

The diffusion equation applied to material mixtures has been investigated for a
variety of grid types and finite difference schemes. We present a conservative form for
the finite difference equations that appropriately handles sharp material discontinuities
for both cartesian and AMR grids. This formulation is then modified in Part II to deal
with material mixing within a cell.

1 Introduction

The goal of this summer project is to investigate diffusion in material mixtures. More
specifically, we are interested in what simplifications can be made to the thermal conduc-
tivity or governing equations to deal with this mixing and sharp discontinuities in material
properties. The context for this project is Eulerian hydrodynamics/multiphyics codes.

There are two kinds of simulation for hydro. One type is based on a Lagrangian mesh,
in which grid points move with the flow, and in the other type grid points are fixed. One
of the major benefits of the Lagrangian approach is that originally the computational cells
can be constructed so they are pure materials and then as the simulation progresses they
remain pure. The major drawback with this Lagrangian approach is that the mesh can
“tangle” where vorticity and high strain causes the mesh to deform to a point where the
computation cannot converge. This is alleviated by remapping the deformed mesh onto
something “nicer” so that the computation can continue. This remapping can lead to cells

∗iyeaton@vt.edu
†dai@lanl.gov

1

Yeaton and Roberts – Numerical Study for Diffusion in Material Mixtures 2

that are no longer pure, but instead contain multiple materials. Remapping forms the basis
of ALE (arbitrary Lagrangian/Eulerian) codes Galera et al. (2010).

One method to avoid this mesh tangling is to have a fixed mesh and have the fluid or
material advect through it. This Eulerian approach is generally favored for fluid mechanics
simulations because it avoids mesh tangling and easily handles vorticity. However, there is
a major difficulty with using Eulerian methods for hydro problems with multiple materials:
as the materials advect, mixed cells form where there is a subgrid interface between the
two materials that is not resolved. How the interface is treated and what approximations
are made can have implications for the physical relevance and accuracy of the simulation.
This is especially true in the context of a multiphysics code, where each physics package
may handle the interface separately, if it is handled at all.

There are a number of computational meshes that can be used for an Eulerian calcula-
tion, ranging from a regular, Cartesian grid to a completely unstructured one where each
element has an irregular shape. A common mesh used, and one that we focus on in this
study, is an adaptive mesh refinement (AMR) mesh. This is a regular mesh with a hierarchy
of mesh sizes, or mesh refinement levels. Each grid element is square and refinement levels
have an edge length half the length of the level above it. The mesh is not allowed to refine
more than two levels at once; a cell must touch a refinement level one above or below its
own at most.

The refinement portion of the mesh refers to increasing the resolution in areas where
interesting physics occur, like near interfaces. Conversely, the mesh is coarsened in regions
of homogeneous material or where no interesting physics occur. Figure 1 shows an example
of an AMR mesh used in this study with four levels of mesh refinement near the circular
material interface. Further from this interface are relatively coarse cells. We also made a
regular mesh of completely fine cells to compare the solution to multiple materials when
using the AMR grid. The benefit of the AMR mesh is a smaller number of cells; this AMR
mesh has 2476 cells and the rectangular grid has 8836 cells, or an increase of 3.56 times.

The AMR mesh provides an effective way to deal with these material interfaces in
certain circumstances. By repeatedly refining the mesh, the number of mixed materials
in a cell decreases. However, it is impossible to refine all cells such that they are pure.
The theoretical material interface can be reconstructed, resulting in an unstructured mesh
Rider and Kothe (1998), similar to a Lagrangian mesh. This would provide a seemingly
better estimate of the underlying physics. The location of this division is set so that the
new area preserves the original volume fraction from the square cell. With the new cell
boundaries calculated, the finite difference relations can be reformulated using pure cells
on the unstructured mesh.

When doing this division, the mesh becomes more complex and more information is
needed. The AMR mesh is very regular and it is easy to know neighbors, distances, and
refinement information. This is not necessarily the case with an unstructured mesh and
more information and complex data structures must be used. There is the the added
complexity for solving diffusion because one now needs to know neighbor information,

Yeaton and Roberts – Numerical Study for Diffusion in Material Mixtures 3

Figure 1: Sample of an AMR mesh where there is significant refinement at the material
interface that is circular.

distances to centers of faces, and overlaps with neighboring cells. This is not needed with
standard hydro and makes coding more difficult. A possible solution is to subdivide the
cells, but instead of using the resulting unstructured mesh, the additional information is
used to make a better estimate of the thermal conductivity on the original mesh. This is
discussed in Part II of this report, detailing how to find the interface if there are only two
materials, and how to formulate the finite difference relations.

A few comments here regarding this technique. While it uses this theoretical interface,
caution must be taken if this new reconstruction accurately represents the physics. If there
is spauling, where material is ejected, a straight-line interface may not accurately represent
the real material. Additionally, if more than one material is present, or more material forms
as the simulation progresses, how is this handled? The current technique uses gradients in
volume fraction from neighboring cells, but if this new volume fraction only resides in
one cell, the gradient is effectively zero and no interface is reconstructed. Another concern
is how to order the multiple materials robustly, so that they accurately represent the
physics (and so that heat transfer is not prematurely retarded if an insulator is placed
in the wrong order). This becomes much more complicated in three-dimensions, where
coding the interface reconstruction is a serious endeavor. Lastly, what if there is atomic
mixing (not chunk mixing, where a piece of one material advected into the cell) and there
is no experimental data on thermal conductivities in the mixture? These are just a few
questions that have not yet been addressed in the current summer work, but some of the
ideas presented here may be used as stepping stones to handle this mixing. Ideally, we can
formulate a multi-material framework for dealing with mixing while maintaining the same
mesh and making things easier to code and solve efficiently.

Yeaton and Roberts – Numerical Study for Diffusion in Material Mixtures 4

2 Flux based effective thermal conductivity

We now turn our attention to dealing with diffusion when there is no mixing, also known as
pure or clean cells. The formulation for an effective thermal conductivity is based on tem-
perature and flux being continuous at the material interface. To deal with the discontinuity,
the conservative form of the governing equation is used and cell averages taken.

We are interested in equations of the following form (diffusion equations),

ρcp
∂T

∂t
= −∇ · ~F + S, (1)

where T is some quantity of interest, like temperature, F is the flux, and S is a source
term. The flux is defined as

F ≡ −κ∂T
∂x

, (2)

where κ is the thermal conductivity, which is material dependent. For the following analy-
sis, we assume κ does not change with temperature (so we are not considering radiation),
but the following analysis holds if it were. Note that if κ = κ(T), then there is an added
complexity of now iteratively solving the matrix system and the nonlinear temperature
equation. The flux is both space and time dependent, so a more general form of the equa-
tions is

ρcp
∂T (t,x)

∂t
= −∇ · ~F (t,x) + S(t,x). (3)

To derive the effective thermal conductivity, we consider one-dimensional heat diffusion
using a uniform grid, as shown in figure 2, about the central cell. We assume the source
term is zero, and integrate over the ∆x domain and from 0 ≤ t ≤ ∆t, giving the integral
form of the equations as ∫

∆x

∫
∆t

∂T

∂t
dtdx = −

∫
∆t

∫
∆x

∂F

∂x
dxdt. (4)

There is no approximation thus far and likewise we can perform the integrations without
approximation as∫ xi

xi−1

u(∆t)dx−
∫ xi

xi−1

u(0)dx = −
∫ ∆t

0
F (xi)dt+

∫ ∆t

0
F (xi−1)dt. (5)

Figure 2: One-dimensional heat equation mesh.

Yeaton and Roberts – Numerical Study for Diffusion in Material Mixtures 5

Defining the following to simplify the notation,

uni ≡
1

∆x

∫ xi

xi−1

u(∆t)dx

u0
i ≡

1

∆x

∫ xi

xi−1

u(0)dx

F̄i ≡
1

∆t

∫ ∆t

0
F (xi)dt

F̄i−1 ≡
1

∆t

∫ ∆t

0
F (xi−1)dt,

where we have spatially averaged the temperature in the cell, and temporally averaged the
fluxes through the cell interfaces. We can now use this to write the discrete form of the
equations, with some rearranging,

Tni = T 0
i −

1

ρicp,i

∆t

∆x

[
F̄i − F̄i+1

]
+ Si∆t. (6)

We use difference equations to calculate the flux based on the left and center cells,

Fi =
−κ̄
∆x

(Ti − Ti−1) , (7)

The material constant κ̄ is simply κ (the material thermal conductivity) if the materials
are the same or the effective interface thermal conductivity if they are different. We can
derive this κ̄ based on conservation laws for the individual cells, namely that the interface
cannot store or generate energy, so the flux leaving one cell must enter the other cell. We
arrive at three equations that are all equal to describe this,

F∗ =
−κ̄
∆x

(Ti − Ti−1)

Fi,L =
−κL
∆x/2

(T∗ − Ti−1)

Fi,R =
−κR
∆x/2

(Ti − T∗),

where F∗ and T∗ are the interface flux and temperature, respectively, and Fi,L and Fi,R are
the fluxes from left and center cells, respectively. Rearranging, we get the effective thermal
conductivity at the cell interface as

κ̄ =
2κi−1κi
κi−1 + κi

. (8)

This expression returns to the material thermal conductivity if both thermal conductivities
are the same. Also, this was only derived for the flux entering from the left. The derivation
holds for each interface and is easily extendable to two- and three-dimensions.

Yeaton and Roberts – Numerical Study for Diffusion in Material Mixtures 6

This method can also be used to find T∗, the interface temperature. Note that simply
averaging the temperature between to adjacent cells gives an incorrect result. Similarly,
in the derivation for κ̄, averaging thermal conductivities between the neighboring cells,
κ̄ = 1/2(κL+κR), is also incorrect. This is a bad estimate and will not handle the interface
correctly. It can be especially inaccurate if the two materials have very different thermal
conductivities. However, since the diffusion equation tends to smooth things out, this error
may go unnoticed, as the change is not necessarily obvious. Figure 3 shows the difference
between the correct, flux based effective thermal conductivity, and the incorrect averaged
method. Since the diffusion solve is global, the error at the interface will propagate through
the rest of the solution domain.

Figure 3: One-dimensional simulation for two material diffusion showing what happens
when the interface is and is not handled correctly.

We can also formulate an effective interface thermal conductivity for an AMR mesh.
This deals with not only the pure cell interface, but also when there are different mesh
refinement levels. The general arguments are the same, but the flux has to be modified to
take into account angles to the center of the small cell face. This is shown in figure 4. Using
this, the thermal conductivity becomes

κ̄AMR =
κiκk

1
4κi + 5

8κk
. (9)

3 Time stepping method

A second-order accurate, implicit scheme was used to update to the new time step Dai and
Woodward (1998a,b). This method has the benefit of going to the correct steady-state when

Yeaton and Roberts – Numerical Study for Diffusion in Material Mixtures 7

Figure 4: Flux for AMR mesh to find effective thermal conductivity.

the step size is large. Going to steady-state is beneficial when the thermal conductivities
are very different. Depending on the time step, one material may diffuse heat completely
(go to steady-state), while the other is still diffusing. Therefore it is important to go to
steady-state correctly to alleviate these errors.

This method is formulated similar to a mid-point method and is graphically shown
in figure 5. We use the flux at the half time-step to determine the temperature at the
new time step. Likewise, the quarter time-step flux is used to calculate the half time-step
temperature. Instead of doing a linear interpolation from the zero to half time step, since
it would still depend on the old time step, a linear extrapolation from the full and half
time steps is used. Therefore, everything is defined at new time steps and remains implicit.
This is different from the Crank-Nicholson method, where the flux used to determine the
new time step is define as

F ≈ 1

2

(
F 0 + Fn

)
. (10)

This will be unstable for large time steps, since the flux still depends on the temperature
at the old time step (F 0).

Figure 5: Graphical representation of time stepping scheme.

Yeaton and Roberts – Numerical Study for Diffusion in Material Mixtures 8

Using our flux definitions, the temperature difference equation (6) becomes

Tni = T 0
i +

∆t

∆x

(
F hi − F hi+1

)
+ ∆tShi

T hi = T 0
i +

∆t/2

∆x

(
F̄ hi − F̄ hi+1

)
+

∆t

2
Shi ,

where the superscript n signifies the new time-step and h is the half time-step. The flux
approximation at the quarter time-step using the linear extrapolation becomes

F̄ h ≈ 3

2
F h − 1

2
Fn. (11)

Substituting this into the difference relations for the temperature we get

Tni = T 0
i +

∆t

∆x2

[
κLT

h
i−1 + κRT

h
i+1 − (κL + κR)T hi

]
+ Shi ∆t

T hi = T 0
i +

3

4

∆t

∆x2

[
κLT

h
i−1 + κRT

h
i+1 − (κL + κR)T hi

]
+

3

4
Sni ∆t

− 1

4

∆t

∆x2

[
κLT

n
i−1 + κRT

n
i+1 − (κL + κR)Tni

]
− 1

4
Shi ∆t.

We now have two coupled equations to solve for each cell in the mesh, which adds some
additional computational work, but it has the aforementioned benefits.

For further clarity, we can develop the linear extrapolation function to get equation (11)
as follows,

f = −2fh (t− 1) + 2fn
(
t− 1

2

)
, (12)

where once again, the superscript n is for the full time-step and h is for the half. We can
verify this is the correct expression by substituting in the known time steps and also the
quarter time step,

t = 1 : f = 2fn
(

1

2

)
= fn

t =
1

2
: f = −2fh

−1

2
= fh

t =
1

4
: f = −2fh

(
1

4
− 1

)
+ 2fn

(
1

4
− 1

2

)
= 2fh

(
3

4

)
+ 2fn

(
−1

4

)
=

3

2
fh − 1

2
fn.

Yeaton and Roberts – Numerical Study for Diffusion in Material Mixtures 9

4 Code Verification Study

Analytical solutions and the method of manufactured solutions (MMS) were used to test
the code implementations. In MMS, we prescribe the desired temperature profile and then
take the spatial and temporal derivatives as in equation (1). This differentiation results in
an extra term, since it is unlikely a new analytical solution was found haphazardly. This
term is then used as the source term in the governing equation. Therefore, we can now solve
with an arbitrary initial temperature field and use the derived source term to get the exact
solution we initially prescribed. This method was used to test both the convergence rate
of the time and spatial components of the code. There was an issue getting the temporal
part to converge on the exact solution, so an analytical solution in one-dimension was used.
While this is a different implementation than used in the 2D code, it still tests the time
stepping algorithm and how close it is to second order.

The exact temperature profile used for MMS is

T (x, y, t) = 1000 + 10 sin

(
3

2

πx

L

)
+ 10 cos

(
3

2

πy

L

)
, (13)

where the temporal derivative is zero and the double spatial derivatives are

∂T 2

∂x2
+
∂T 2

∂y2
=

45

2

π2 sin
(

3
2
πx
L

)
L2

+
45

2

π2 cos
(

3
2
πy
L

)
L2

. (14)

Using equation (1), our source term S becomes

S(x, y, t) = −κ
(
∂T 2

∂x2
+
∂T 2

∂y2

)
. (15)

The open source symbolic mathematics library for Python, SymPy SymPy Development
Team (2013), was used to derive the above expressions. Figure 6a shows the time conver-
gence rate for the one-dimensional analytical solution. We expect second-order accuracy
and we almost achieve that; it is formally O(∆t1.96). We believe this discrepancy is due
to extrapolation step when finding the flux at the quarter time-step. We see artifacts of
the mesh resolution affecting our convergence study. After the time-step has been refined
about 100×, we see errors from the grid adversely affecting the solution, even through it
has a very fine resolution. This causes the infinite error norm to level off and the observed
order of accuracy to decrease to zero. The effect of the mesh on discretization error norms
is also shown, where they flatten-out sooner. However, we do reach second-order accuracy.

For the grid convergence study, grids from 5 × 5 to 65 × 65 were used, with the grid
spacing halved each time (figure 6b). For each grid, the CFL number (κ∆t/∆x2) was
maintained at 0.7 and the time step adjusted according for the given κ = 0.05. Each
simulation was run until steady-state was reached and the max (infinite) and 2-norms were

Yeaton and Roberts – Numerical Study for Diffusion in Material Mixtures 10

(a) Time (b) Grid

Figure 6: Time and grid convergence plots.

taken in relation to the exact solution,

err =

∥∥∥∥E − TE

∥∥∥∥ , (16)

where E and T are the exact and calculated solutions, respectively. The discretization error
norms were used to check the observed order of accuracy p̂,

p̂ = ln
DEcoarse

DEfine
/ ln r, (17)

where we use the discretization errors on the fine and coarse mesh and the mesh refinement
r (which is two for this study). The grid refinement factor h is the grid spacing compared to
the smallest grid spacing (a small h means the finest grid). As the grid is refined, we should
see the observed order of accuracy approach two, which we do for the infinite norm. This
is the norm generally used for diffusion since we often care about the maximum difference
is, not the average. When the 2-norm is used, it shows first-order accuracy.

Yeaton and Roberts – Numerical Study for Diffusion in Material Mixtures 11

5 Sample results

We now present, in figure 7, a few results for pure cells for both AMR and cartesian
meshes. This shows some of the capabilities of the code for handling different meshes
and sharp material discontinuities. Both used thermal conductivities different by a factor
of 7.24. The “theoretical” interface is shown in black and cells above/left have the higher
thermal conductivity and cells below/right have the lower one. The cells are pure; cells with
centroids on or outside the line are one material, cells inside are another. The cartesian
mesh is composed of the greatest AMR refinement level and only a zoomed in portion (the
upper left of figure 1) is shown. Effective interface thermal conductivities for both regular
and AMR grids were used with the 2D tested implementation discussed above. The code
uses GMRES, a Krylov subspace method, to solve the linear matrix equations, and sparse
matrices to store the difference equations. A plot of the sparse matrix structure, when
using the time stepping method discussed above, is shown in figure 8. From this diffusion
study, we see that they look qualitatively similar, except that heat has diffused faster in
the AMR case since a majority of the cells are larger. This is due to the larger cells on the
exterior more rapidly changing temperature.

(a) AMR (b) Cartesian

Figure 7: AMR and cartesian mesh runs with pure material interfaces and thermal con-
ductivities between materials different by a factor of 7.24.

Yeaton and Roberts – Numerical Study for Diffusion in Material Mixtures 12

Figure 8: Sparse matrices for both AMR and cartesian meshes for types problem solved in
figure 7

Yeaton and Roberts – Numerical Study for Diffusion in Material Mixtures 13

6 Conclusion and Future Work

A physics based formulation for the finite difference diffusion equation has been presented
that can accommodate an arbitrary material discontinuity. A second-order accurate scheme
in both space and time, with the implicit time scheme going correctly to steady-state, has
also been discussed and implemented. Additionally, preliminary results for dealing with
material interfaces using AMR has been shown. While the majority of the framework has
been laid to begin experimenting with in-cell mixing, it can still not handle AMR grids. An
example of a volume fraction field on an AMR grid, like would be found in a multi-physics
simulation, is shown in figure 9. Next steps would be to apply interface reconstruction to
this mesh and compare with the pure cells above. Additionally, a fully unstructured solver
should be coded as a way to deal with the irregular geometry introduced by splitting the
cells. This could provide the “true” solution from which other methods of dealing with
mixing can be tested against. This would complete the testing framework to deal with
material mixing and interfaces.

Figure 9: Volume fraction for AMR mesh with known, continuous material interface.

One of the main difficulties of dealing with these mixed cells is reconstructing the
interface. The current implementation only handles two materials in 2D and relies on
the standard gradient method (Young’s method) Rider and Kothe (1998). This becomes
difficult with more materials, where their ordering becomes important. One way to deal with
this and leverage previous work is to look to the computer vision community. Here the goal

Yeaton and Roberts – Numerical Study for Diffusion in Material Mixtures 14

is generally fast identification of interesting features in an image, like finding boundaries
or “segments” of an image. This allows for compression of certain regions and increases
computational speed Achanta et al. (2012). When making these segments or superpixels, it
is possible to have subpixel interfaces using some algorithms Forte; Malmberg et al. (2009).
If we view the computational mesh as an image, where volume fraction for a particular
material can be a color intensity (for example, RGB could correspond to three different
materials), it maybe be possible to use one of these algorithms. The subpixel interface
would correspond to the sub-cell material interface that we cannot resolve. Lastly, the
ordering of particular materials can be dealt with by stacking different meshes (as they
progress and change in time) into a three-dimensional structure where voxel interfaces are
calculated Chang and Tao (2010).

This idea is very nascent, but it might prove a new application of computer vision and
leverage their advanced algorithms for dealing with interface identification. However, there
are a few items that need to be addressed first. One is a mapping from mesh coordinates to
a regular grid to use the algorithms. Another is making sure that the constructed interface
conserves mass/area after the reconstruction. An additional constraint to the algorithms
may be needed to ensure this. Lastly, this does not solve one of the most difficult problems
of finding the overlapping areas between adjacent cells. There might be ways around this
by making approximations using the new cell centroid, which should be easy to find from
the interface reconstruction. This could be an extension of ideas presented in Part II.

Yeaton and Roberts – Numerical Study for Diffusion in Material Mixtures 15

References

Radhakrishna Achanta, Appu Shaji, Kevin Smith, and Aurelien Lucchi. SLIC Superpix-
els Compared to State-of-the-Art Superpixel Methods. IEEE TRANSACTIONS ON
PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 34(11):2274–2281, 2012.

Ming-Ching Chang and Xiaodong Tao. Subvoxel Segmentation and Representation of Brain
Cortex Using Fuzzy Clustering and Gradient Vector Diffusion. pages 76231L–76231L–11,
March 2010. doi: 10.1117/12.843853. URL http://proceedings.spiedigitallibrary.

org/proceeding.aspx?articleid=747654.

Wenlong Dai and Paul R Woodward. Numerical simulations for nonlinear heat transfer in
a system of multimaterials. Journal of Computational Physics, 139(1):58–78, 1998a.

Wenlong Dai and Paul R Woodward. Numerical simulations for radiation hydrodynamics.
i. diffusion limit. Journal of Computational Physics, 142(1):182–207, 1998b.

P. Forte. A SIMPLE METHOD OF SEGMENTATION WITH SUBPIXEL ACCURACY.
pages 403–405.

Stéphane Galera, Pierre-Henri Maire, and Jérôme Breil. A two-dimensional unstructured
cell-centered multi-material ALE scheme using VOF interface reconstruction. Jour-
nal of Computational Physics, 229(16):5755–5787, August 2010. ISSN 00219991. doi:
10.1016/j.jcp.2010.04.019. URL http://linkinghub.elsevier.com/retrieve/pii/

S0021999110001956.

Filip Malmberg, Joakim Lindblad, and Ingela Nystr. Sub-pixel Segmentation with the
Image Foresting Transform. Combinatorial Image Analysis, pages 201–211, 2009.

William J. Rider and Douglas B. Kothe. Reconstructing Volume Tracking. Journal of Com-
putational Physics, 141(2):112–152, April 1998. ISSN 00219991. doi: 10.1006/jcph.1998.
5906. URL http://linkinghub.elsevier.com/retrieve/pii/S002199919895906X.

SymPy Development Team. SymPy: Python library for symbolic mathematics, 2013. URL
http://www.sympy.org.

http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=747654
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=747654
http://linkinghub.elsevier.com/retrieve/pii/S0021999110001956
http://linkinghub.elsevier.com/retrieve/pii/S0021999110001956
http://linkinghub.elsevier.com/retrieve/pii/S002199919895906X
http://www.sympy.org

LA-UR-13-26644
Approved for public release; distribution is unlimited.

Title: Numerical Study for Diffusion in Material Mixtures: The Treatment of
Mixed Material Cells

Author(s): Roberts, Thomas M.

Intended for: Computational Physics Summer Workshop, 2013-06-10/2013-08-16 (Los
Alamos, New Mexico, United States)
Report

Issued: 2013-08-22

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National
Security, LLC for the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.
By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to
publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.
Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the
U.S. Departmentof Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish;
as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Numerical Study for Diffusion in Material Mixtures:
The Treatment of Mixed Material Cells

T. Maximillian Roberts

Mentor: William Dai
Los Alamos National Laboratory

Computational Physics Workshop, Summer 2013
(Dated: August 14, 2013)

In the modeling of hydrodynamics on an Eulerian mesh, the interface between different material
types can be advected in a manner such that a cell on this mesh may contain multiple material types.
Material properties such as conductivity for pure materials are well known and tabulated for use in
computation, but these mixtures will have material properties which may not be well represented
by these empirical values or even some averaging of them. This project focused on the treatment
of these mixed cells by approximating the sub-cell structure from gradients in the material volume
fraction. Using information from this “interface reconstruction”, the sub-cell structure was used to
improve approximations of directional conductivity. Finally, this method was compared to a simple
averaging of material properties in the mixed cells.

I. INTRODUCTION

The heat equation, a specific case of the diffusion equation, is one of the most elementary partial differential
equations. Given in differential form:

cpρ
∂T

∂t
= −∇ · ~F = ∇ · (k∇T) (1)

where cp is the thermal heat capacity, ρ is the mass density and k is the thermal conductivity.
For our interests, we will be focusing on the role of thermal conductivity in this equation, so for the rest of this

discussion we will take the product of heat capacity and density to be unity for all materials in question. As such the
equation now only involves one coefficient which we will continue to refer to as k, the conductivity (which is generally
called the thermal diffusivity).

For the simple case of k being a constant across the domain of interest, with reasonable boundary and initial
conditions, an analytic solution is easily obtained through separation of variables. In 2D, for the case of Dirichlet
boundaries, δΩ = 0, and initially constant temperature of u0, we have:

u(~x, t) =
∑
m,n

Amn sin(
mπ

L
x) sin(

nπ

L
y)e(−k

(m2+n2)π2

L2 t) (2)

Amn =

∫∫
u0 sin(

mπ

L
x) sin(

nπ

L
y)dxdy (3)

Note higher order terms decay exponentially faster, so after a short time only the lowest order solutions play a
significant role.

We can consider the discrete form of the heat equation that we will numerically solve. If k is constant on the
domain we can pull it out of the derivative. Looking first at the RHS, we can consider the Laplacian, which we know
can be discretized in various forms. Using the second order centered differencing scheme, we approximate:

∇ · (k∇T) = k∇2T ≈ kTi+1 − 2Ti + Ti−1

(∆x)2
(4)

Consideration of the time derivative is more involved. An explicit scheme would take the terms on the RHS to be
from the previous time, tn, while an implicit scheme takes these terms to be from the next step, tn+1. Explicit solvers
are simple, but are fundamentally constrained by the CFL limit for stability. We will use an implicit time step:

Tn+1
i − Tn

i

∆t
= k

Tn+1
i+1 − 2Tn+1

i + Tn+1
i−1

(∆x)2
(5)

and we solve this expression for Tn+1.

2

Solving this equation numerically shows the expected behavior which can be compared to the analytic solution.
Note that this method has first order accuracy in time but second order in space. This is shown easily by plotting
error from the solution calculated with increasing resolution in time or space on a log-log plot. An example solution
is shown in Figure 1.

FIG. 1: Solutions to the heat equation with boundaries fixed at zeros and initially constant temperature on the domain.

II. MATERIAL MIXTURES

So far we have discussed the case of domains where the materials type is constant. If material properties are not
constant in space, then k cannot simply be pulled out of the derivative. This makes solving the heat equation much
more challenging. If we consider the case of two materials joined at a sharp interface, then we can have a discontinuity
in the material properties in the domain. In the differential equation, this discontinuity would result in a singularity
which is clearly not physical.

While there are certain tricks one can play via variable transformation and other methods, an analytic solution to
this problem is difficult and very specific. From physical intuition we can ballpark what the solution will look like.
Lets take the 1D case of two materials initially at a uniform temperature, cooled from both ends. If the left material
has a higher conductivity than the right, we would expect heat to leave faster through the left side than the right.
As such, the left material would cool quickly, resulting in more rapid cooling of the right material as well. This is
illustrated in Figure 2. We know that where the two materials contact they should be at the same temperature,
and that the flux into the left material from the interface must equal the flux out of the right material on that side.
Therefore both temperature and thermal flux are continuous across the interface. This basic idea is a good sanity
check, but for quantitative analysis we will need to do much better.

FIG. 2: Comparing the expected solutions between the pure material solution (blue) and the mixed material where the left
half has twice the conductivity as the right.

We would like to note at this point that for this project we focused on thermal diffusion on an Eulerian mesh, a mesh
that is fixed in the “lab” frame of reference. This is in contrast to a Lagrangian mesh, which is a mesh that moves
with the material. As we are dealing Eulerian meshes, it is likely that if there is advection in the simulation, cells with
different material types will mix. This will result in cells containing multiple values for conductivity. For bookkeeping
of materials on a sub-cell scale, the fraction of each material in the cell is recorded, known as the “material volume
fraction.” This volume fraction is known for each material type in each cell. We will from here on refer to “pure” cells
as having a volume fraction of 1 for a specific material, and “mixed” cells as having multiple material types. Note
that all information pertaining to the structure of that material in the cell is lost in using a volume fraction. The
material could be evenly diffused throughout the cell or lie on a sharp interface.

3

At this point we can now begin to ask some questions; How we treat these cells with mixed materials? What does
one use for the conductivity of this cell? Is a simple averaging of the properties of two materials sufficient? Could we
do something better? These are one of the main questions this report will begin to address. The next section begins
to tackle the problem, starting with pure cell interfaces.

III. EFFECTIVE CONDUCTIVITY, k̃

As we saw above, the handling of a discontinuity in the differential form of the heat equation is non-trivial. How
do we discretize this appropriately? By ignoring the fact that a change in the material conductivity affects the heat
flow out of the discrete form (effectively pulling k outside the derivative), we will be discarding important physics.
We could perform a simple averaging of adjacent cell properties, but on what grounds can we justify this?

We can handle the discontinuity in material properties more physically by considering the flux between two adjacent
cells of different materials. We know two things at this interface; the temperature infinitely close to the interface on
both sides must approach the same value, and the heat flux into the interface must equal the flux out of the interface,
which must equal the flux across the interface (assuming no surface or point source). As such, we have just created
a statement about the heat flux, and therefore conductivity, between these two cells based on a physical law. The
situation is depicted in Figure 3.

TL TRT*

kL kRFL FR

F*

FIG. 3: Left: Two cells containing different materials. Conservation of flux at the material interface yields an appropriate way
to express the conductivity between the different materials. Right: A comparison between the algebraic mean and the effective
conductivity method for a 1D test case between two materials. Figure used courtesy of William Dai.

From this simple statement of conservation of flux we can write the following four statements:

FL = − kL
∆x/2

(T∗ − Ti) FR = − kR
∆x/2

(Ti+1 − T∗) (6)

F∗ = − k∗
∆x

(Ti+1 − Ti) (7)

FL = F∗ = FR (8)

From these statements, we can solve for the temperature T ∗ at the interface, as well as the effective conductivity,
k̃, between the two cells. These are given as:

T∗ =
kRTi+1 + kLTi

kL + kR
k̃ =

2kLkR
kL + kR

(9)

Note the expression for k̃ is a sort of “reduced conductivity”, or in limit of k1 << k2, the conductivity behaves
most like the smaller conductivity. Also notice that in the case of equal material properties the two cells conduct with
the natural conductivity of their material. T ∗, while we don’t use it here, also has its applications.

Comparing a solution computed using this effective conductivity to one that simply averages conductivity between
neighboring cells, we see the effective conductivity is much more representative of the “true” solution, as is shown on

4

the right side of Figure 31.
As such, we have implemented this effective conductivity in our code to best represent the conductivity between

cells of different materials. Note that this method is limited to describing pure cells of one material type or another.
The case of mixed material cells is more complicated and will be discussed next.

IV. INTERFACE RECONSTRUCTION

A. Basic Principles and Method

Given a material volume fraction on a mesh, one can use gradients in this volume fraction to approximate the
interfaces between different materials. For instance, lets take the situation where we have two materials with a
transition between them. Each material is represented by a fractional value of the total material at that point, the
material volume fraction. If we take the gradients of one material’s volume fraction, we know that the surfaces of
constant volume fraction must lie perpendicular to these gradients.

On this mesh, we will have pure cells of each material type, and at the transition there will be mixed cells. If this
transition occurs quickly enough (spatially), we can approximate a material interface in these mixed material cells as
a line perpendicular to the volume fraction gradient. This line will divide the mixed cells and will be placed based on
the cell’s volume fraction. Performing this for all the mixed cells will approximate and interface between the materials
at a sub-cell scale.

For this project we weren’t given a test case, so we created our own volume fractions. To represent a material on
a mesh, we placed ones and zeros in a matrix to form various test material interfaces. The presence of a one meant
that cell was pure of the material type in question, a zero meant there was none of that material in the cell. To create
mixed cells we simply took block averages on this mesh. For example, if we started with an N × N mesh of ones
and zeros, by averaging cells in blocks of n × n, we returned a smaller matrix of dimensions (N/n) × (N/n) where
there are now ones, zeros and fractional values at the material interface. This was our artificial mixing process. For
illustration, an example of this is shown in Figure 4.

FIG. 4: Initial clean material interface on the right (ones and zeros on matrix) and the artificially mixed volume fraction on
the left.

B. Volume Fraction Gradient and Interface Line

To find gradients of volume fraction on the mesh, we used a linear least-squares method. For a given cell, by fitting
a line in a least-squares sense to the values for volume fraction in the surrounding cells, in both the x and y directions,
the slopes of these lines yield the components of the gradient in volume fraction. By performing this for the entire
mesh we produce the leftmost plot in Figure 5.

1 Figure courtesy of William Dai.

5

In these mixed cells the interface will be a line perpendicular to the cell’s volume fraction gradient. Clearly, the
line perpendicular to the gradient vector goes as the negative reciprocal of the gradient vector components (−x/y).
These initial interface lines are shown in the rightmost plot in Figure 5.

FIG. 5: The process to make the initial interface: find the gradients in the volume fraction, from these gradients find the
perpendicular lines in each cell. In the cells with fractional volume fraction, use these perpendicular lines to create interface
cells.

To begin to form our interface, what we call “interface cells” are created by dividing the cell by using the line
perpendicular to the cell’s gradient vector. Initially, we divide the cell in half simply by defining the line to pass
through the cell center. We perform this for cells that have a non-zero and non-unity volume fraction only. These
initial cells are shown in the bottom of Figure 5.

These “interface cells” we create maintain the important information about the cells that are not pure. They are
objects that store the cells material properties, corners, area, edge information and other details necessary for later
calculation. The positions of the dividing line ends and the corners of the cells are stored as the “nodes” of the cell.
Depending on the angle of the interface line, the number of nodes can be 3, 4 or 5.

C. Interface Cell Area Resizing

The last step in recreating the interface requires moving each interface line based on the cell’s volume fraction. The
angle of the line is fixed as it must remain perpendicular to the gradient, but its position in the cell (y-intercept)
can change such that the fractional area “under” the interface line equals the cell’s volume fraction. To change the
area of the cell, we simply need to move the positions of the two nodes which describe the line dividing the cell (the
interface line). The manner in which we move these nodes depends on whether we are increasing or decreasing the
cell’s current area and by how much.

Next, in each case we need to know how much to increase or reduce. For only small changes in cell area, the
interface line may only need to be moved slightly thereby not significantly changing the cell structure. By moving the
interface line too far, one of the nodes of this line will hit the corners of the cell. After this, this node will now need

6

to move along the other edge of the cell. After this happened, the cell will have either gained or lost a corner and an
edge. For these cases the cell object must be redefined such that we properly manage the shape of the cell for later
calculation. An example of this process is shown in Figure 6.

Initial Small Increase Large Increase

1

2

3

41

2

3
4 1

2
4

5

3

Triangular Area

Rectangular Area

FIG. 6: Depending on the cell’s volume fraction the nodes describing the interface line must be moved in different ways. For a
small enough change the nodes of the cell may simply be repositioned, but past a critical value the nodes must be redefined,
adding a node and edge. An interface cell can be divided into its “triangular” and “rectangular” regions which allows for a
simple means of determining how to resize the cell based on it volume fraction and gradient angle.

We can discuss the cell area in terms of its rectangular and triangular regions, as is shown in the first cell in Figure
6. Using this description, we find an algorithm for area resizing as follows:

• Volume fraction less than current fractional area (need to reduce area):

– Volume fraction less than triangular area:

∗ Completely remove rectangular cell area, reduce triangular region appropriately.

∗ Note we now need to remove a node and edge in this case.

– Volume fraction greater than triangular area:

∗ Need to reposition the existing interface nodes accordingly, simply reduce the rectangular area.

• Volume fraction greater than current fractional area (need to increase area):

– Volume fraction greater than triangular area plus twice the rectangular area:

∗ Increase cell area such that only a triangular area is not occupied, reduce this triangle.

∗ Note we now need to add a node and edge in this case

– Volume fraction less than triangular area plus twice the rectangular area:

∗ Need to reposition the existing interface nodes accordingly, simply increase rectangular area.

Note that for each above case, the dividing nodes are assigned based on gradient angle, so we need to handle the
various ranges of angle for each case. This resizing code required a substantial amount of consideration and debugging.

D. Finding Sub-Cell Centers and Edges

After rescaling these interface cells we need information about various geometric features. We will see later the
position of the interface cell centroids will be important, so calculating these is necessary. To simplify this calculation,
a python package called Polygon was used. This package has several function specific to the treatment of polygons,
and from the nodes of each interface cell Polygon objects were created. Use of this package allowed for simple plotting
of these cells as well as knowledge of the cell area (to confirm the resizing) and the cell center, which is simply stored
as an (x, y) coordinate in the cell.

The other important detail the interface reconstruction gives us are the edges of these interface cells. The edges of
each cell are stored as simply two points (or nodes) of the cell’s edge. A convention was enforced to maintain a left,
right, top, bottom order to the arrangement of nodes and edges. The left side is the starting side, with the lowest left
point being the starting node. Left is given priority over bottom as is shown in Figure 7.

7

1

2

3

4

1

2 3

4
1 2

3
4

FIG. 7: Left is given highest priority as the initial node, lower left higher than upper left. The node order proceeds clockwise.

E. Resulting Interface

After performing an interface reconstruction using the above method for both volume fractions, an approximation
to the material interface becomes clearly defined. In each mixed material cell an interface line divides the two material
types. Generally in the case of a sharp interface (only a one or two mixed cells between pure cells), this reconstructed
interface is relatively representative of the original interface, as in shown in Figure 8.

FIG. 8: By performing the interface reconstruction on both material volume fractions we have an approximation for the
positioning of the materials on a sub-cell scale. While the new interface represents the original, note that it is discontinuous
between cells.

The interface is discontinuous as a line was used for the interface in each cell. This line was constrained first to be
perpendicular to the gradient in volume fraction (slope), then placed by the cell’s volume fraction (y-intercept). As
such, there is no more freedom in the fit to make the interface continuous. The use of a higher order polynomial or
some other method could possibly be employed to smooth this interface, but that was beyond the scope of this work.

It is also important to mention that this method as described above fails when more than two material types are
present at an interface. This method currently works as the gradients of different material volume fractions are anti-
parallel. If three or more materials were present, this condition would most likely not be satisfied and there would
be resulting overlap of interface cells in the reconstruction. This is clearly unphysical, and therefore a fundamental
limitation of the aforementioned technique. Other codes handle this problem by putting certain constraints on the
arrangement and alignment of materials on the mesh1. For example, there may be a requirement that the materials
are always arranged in a certain order, or that the materials are always aligned based on the direction of some primary
material species.

8

V. USING THE INTERFACE RECONSTRUCTION

From the interface reconstruction described in the last section, we can now approximate the location of materials
in these mixed cells based on gradients in the volume fraction. Given this interface, we could easily divide the mixed
cells each in two, yielding a mesh of only pure materials. In one way this greatly simplifies the issue; given only pure
cells we already have a method to calculate the conductivity based on conservation of flux, which is shown to be an
accurate representation. While these cells are no longer interacting across a purely vertical or horizontal interface the
same underlying principle holds, so the calculation would simply be adjusted geometrically. The real issue is that if
we divide these cells we are forced to move from the mesh we started with to a mesh that can handle the unstructured
cells resulting from this interface. This poses a severe computational burden as a regular grid can be handled with
much faster methods.

We wanted to somehow use the information from the interface reconstruction to improve the accuracy of the
calculation on the original mesh, a way of representing the division of the cells on the interface while using only a
single cell for the two materials. By using the information of the placement of the different material types in the cell,
we hoped to find an alternative representation of the conductivity into these cells that would best represent the two
divided cells. We do this by considering the directional effective conductivities.

A. Deriving Effective Conductivity with Cell Center of Mass

Given a cell divided as shown in Figure 9, we can discuss the flux from the upper sub-cell through the right boundary
into the neighboring pure cell:

kL
kR

kR

COM

COM

Δx1

Δx2
d

a

TL TRT*

kL
kR

FL FR

F*

kR

FIG. 9: Two neighboring cells, one divided by the interface reconstruction. On the left we show the sub-cell centroid geometry
and the fractional flux boundary between the cells. On the right the representation to derive the effective conductivity is
illustrated.

From the same arguments of conservation of flux as used to find the previously derived effective conductivity, we
can find write the following expressions:

FL = − kL
∆x1

(T∗ − Ti)
a

d
FR = − kR

∆x2
(Ti+1 − T∗)

a

d
(10)

F∗ = − k∗
∆x1 + ∆x2

(Ti+1 − Ti)
a

d
(11)

FL = F∗ = FR (12)

Notice in these we use the sub-cell centroid for determining the flux through the boundary, but as the flux is dotted
with the normal to the surface as given by:

∂T

∂t
= −∇ · ~F →

∫
∂T

∂t
dV = −

∫
∇ · ~FdV = −

∮
~F · n̂dA (13)

9

we see that only the x separation is important in this case. Here we will use the approximation that these sub-cell
temperatures are equivalent to the original cell-center temperature, though later we discuss that this approximation
should be improved. Under this assumption, we find the effective conductivity between these neighboring cells to be
given as:

k̃ =
kLkR

kL
∆x1

+ kR
∆x2

∆x1 + ∆x2

∆x1∆x2
(14)

Note that this expression returns to the original expression for effective conductivity between two pure cells in the
case that ∆x1 = ∆x2.

To find the actual effective conductivity between two of these interface cells, we must consider the flux between all
neighboring sub-cells. Above we found the new effective conductivity, but the flux for a specific k is only through a
portion of the boundary as is shown in Figure 9. As such, we compute the effective conductivity through each sub-cell
boundary and scale this based on the fractional portion of the cell edge the sub-cell is in contact with. These scaled
conductivities are then summed:

Ftotal =
a

d
Fabove +

d− a
d

Fbelow (15)

= −a
d
k̃above∇T −

d− a
d

k̃below∇T (16)

= −(
a

d
k̃above +

d− a
d

k̃below)∇T (17)

= −k̃tot∇T (18)

B. Cell-Center Approximation

As mentioned earlier, we are attempting to represent the information from the interface reconstruction about two
cells effectively in one. By considering the conductivities through sub-cell edges we have begun this process, but
are still missing part of the representation. This approximation currently uses the same value for both sub-cell
temperatures, the cell-center temperature. In many instances this will be a poor approximation. We can’t afford to
keep track of two temperatures as we wish to maintain the original mesh style, but we can find a better approximation
for the sub-cell temperature. Methods considering the sub-cell centroid as well as the internal conductivity of the cell
based on our interface reconstruction have been discussed but not thoroughly developed as time in the workshop was
limited.

VI. COMPARISONS TO CELL AVERAGING

Using the interface reconstruction to calculate the effective conductivity for the interface cells and their neighbors
we have now have a new means of describing the heat transfer between these cells. Earlier we had discussed cell
averaging based on volume fraction to give us a simple approximation to a cell’s conductivity. As such, we have two
methods to compare. We use a test case of two materials separated by at a circular interface. The interior material is
of lower conductivity than the external material. First, we can look at the actual differences in effective conductivity
directly. If we break a cell into four quadrants as shown in Figure 10, we can represent the effective conductivities
with neighboring cells more easily.

Using this visualization we can compare the representations of the interface conductivities. In Figure 11 we show
the effective conductivity using the cell averaging method and using the interface reconstruction. Superimposed on
these plots is a black circle representing the actual material interface.

Comparing these two plots, immediately one notices that the interface reconstruction sharpens our representation
of the material conductivity. This comes from a better representation of the conductivity based on the materials in
contact between cells. For example, notice the cells at the top of the “interface method” plot. The top of the mixed
cells are made of outer material, and the conductivity between this outside boundary and the above pure cells is
based only on the outer material’s conductivity. Compare this to the same cells in the “cell averaging” plot. We see
here that the averaging of the materials in the mixed cells changes the effective conductivity between two regions that
should conduct uniformly. Cell averaging appears to diffuse the actual material interface.

To more quantitatively compare these methods we need a “true” solution to compare to. In contrast to the single
material case, we don’t have an analytic solution. Alternatively we could compare results found by dividing the mesh
along the interface, but this requires coding an unstructured mesh method which we unfortunately didn’t have time to

10

kT
kL

kR
kB

kTkL kRkB

FIG. 10: For visualization we divide the cell into four quadrants to represent the effective conductivities with the cell’s neighbors.

Cell Averaging Interface Method

FIG. 11: On the left is a visualization of the effective conductivity from using a cell averaging of conductivity based on volume
fraction. On the right is the result if you use information from the interface reconstruction instead. The black ring represents
the actual material interface. Notice the sharpening of our representation of the conductivity using the interface method
compared to the cell averaging.

do. As a last resort we can perform a high resolution run where the original interface we artificially mixed to produce
our volume fraction is used as the true interface. This is performed simply using the pure cell effective conductivity
first discussed.

Using the true solution described above, the error for both methods was calculated. Various ratios between the two
material conductivities were tested. This is plotted for both methods in Figure 12.

As Figure 12 shows, there is a clear trend with ratio between the material conductivities for the interface method, but
no clear trend for the cell averaged method. For small ratios between k1 and k2 we see that the cell averaging method
seems to be the more accurate of the two, but for conductivities over an order of magnitude different the interface
reconstruction method becomes more accurate. This answers the earlier question; if the materials are significantly
different conductors, when they are averaged it may be a poor representation. Note that the two methods agree
completely for the unity ratio case.

If we look at contour plots of the error from both methods, we gain some insight into what is being misrepresented.
Figure 13 plots the difference from our true solution for increasing k ratio.

You’ll notice that the interface reconstruction method always underestimates the temperature of the interior material
while the cell-averaging method initially underestimates, then overestimates for large enough conductivity. The
structure of the cell-averaging error changes dramatically from k1/k2 = 2 to k1/k2 = 10, then is very consistent for
larger proportionality. This suggests that the conductivity averaging process changes the effective “structure” of the
conductivity in a less predictable way than the interface reconstruction method.

11

FIG. 12: L2 norm error for both the cell-averaging method and the interface reconstruction method with grid size. 8 ratios
between the conductivities are plotted, showing that the cell averaging technique is more accurate for more similar materials,
but the interface reconstruction is better for materials with significantly different conductivities.

The fact that interface method effectively cools the interior faster than it should while the cell averaging method
cools the interior too slowly can be directly related to how the methods represent the material interface. As the
cell averaging diffuses the interface, lower interior conductivities are spread out, effectively insulating the interior
material. Opposite to this, the interface method sets the effective conductivity of an interface cell equal to the outside
conductivity, even if the cell is mostly inside the interface. This cools the interior material faster than it should, an
issue which could be accounted for by more properly considering the sub-cell temperatures.

VII. CONCLUSION

We have seen the method using the interface reconstruction to improve our estimations of conductivity between
cells is in fact better than simple averaging of the material properties in a mixed cell for the case of significantly
different conductivities at a material interface. For cases where the conductivities of the materials were similar, cell
averaging did prove to be more accurate though the strange effect of the ratios between the conductivities showed
that this method of may have issues. It was also clear that the interface method always underestimated the interior
material temperature for the test geometry we used.

To improve on this current method, some means of describing the mixed cells internal mechanisms should be
imposed. Currently both sub-cells use the cell-center temperature as the temperature at their centroid which is a
poor approximation. Going through the derivation of effective conductivity considering a more proper treatment
of the sub-cell center temperature yields a more complex result requiring some interpolation to find this sub-cell
temperature based on neighboring cell-center values. The algorithm involved to account for this has been conceived,
but the timeframe of the project prevented the implementation. It seems reasonable to believe that by considering
these sub-cell temperatures properly, the results from the interface method should be as good if not better than the
cell averaging method for all ratios between conductivity.

With regard to application of this method, one obvious example is at the finest resolutions of AMR style meshes
separating two materials. To completely represent the material interface an unstructured mesh would be necessary,
but maintaining the AMR type mesh is certainly computationally advantageous. These unstructured meshes will
become particularly taxing when we move from 2D to 3D. As an alternative the interface reconstruction could mostly
represent this interface while maintaining the original mesh structure. While the interface reconstruction coded for
this project was 2D, a 3D version can certainly be envisioned though it may be substantially more tedious to code. It
should be noted that while in 3D the interface reconstruction could prove to be relatively expensive, reconstruction
is clearly a local operation and is therefore easily parallelizable.

12

Cell Averaging

k 1/k
2 =

 2

Interface Method

k 1/k
2 =

 5

k1/k2 = 5

k 1/k
2 =

 1
0

k1/k2 = 10

k 1/k
2 =

 1
5

k1/k2 = 15

FIG. 13: Plots of difference between “true” solution and solutions from both methods for increasing k ratio. Notice that
the overall behavior for the interface method is more consistent, even for smaller k ratios. The interface method always
underestimates interior temperature while the cell averaging method often overestimates.

13

VIII. AKNOWLEDGEMENTS

I would like to thank my mentor William Dai for his advice and weekly lecture-style meetings where we learned
the error of our ways. We were given more freedom than most projects with regard to direction and how to handle
problems, which made the project highly educational. I would also like to thank Scott Runnels for organizing this
workshop and taking the extra time to make this experience memorable and fun!

1 W. J. Rider, D. B. Kothe, Reconstructing Volume Tracking, JOURNAL OF COMPUTATIONAL PHYSICS 141, 112-152
(1998), ARTICLE NO. CP985906

2013 Computational Physics Student Summer Workshop: Final Reports

Turbulence Modeling

(Dan Israel and John Schwarzkopf,
mentors)

BHR Equations with Immiscible Effects: Preliminary Work

Jeremy A. Horwitz, John D. Schwarzkopf

Abstract

Compressible turbulent flows with dispersed phase effects are found in many applications

ranging from combustion to cloud formation. However, these types of flows are among the most

challenging to simulate. While the exact equations governing a system of particles and fluid are

known, computational resources limit the scale and detail that can be simulated in this type of

problem. Therefore, a common method is to simulate averaged versions of the flow equations,

which still capture salient physics but which are relatively less computationally expensive.

Besnard et al. [1] developed such a model for variable density miscible turbulence, where

ensemble-averaging was applied to the flow equations to yield a set of filtered equations.

Besnard et al. further derived transport equations for the Reynolds stresses, the turbulent mass

flux, and the density-specific volume covariance, to help close the filtered momentum and

continuity equations. We re-derive the exact BHR closure equations including integral terms

owing to immiscible effects. Physical interpretations of the additional terms are proposed. The

goal of this work is to extend the BHR model to allow for the simulation of turbulent flows

where an immiscible dispersed phase is non-trivially coupled with the carrier phase.

2

Table of Contents

Introduction ... 3

Discussion ... 6

Review of Volume Averaging .. 6

BHR Equations with Immiscible Effects .. 11

Volume-Averaged Continuity Equation with Immiscible Effects .. 11

Volume-Averaged Momentum Equation with Immiscible Effects .. 12

Reynolds Stress Equation with Immiscible Effects .. 14

Turbulent Mass Flux Equation with Immiscible Effects .. 17

Density-Specific Volume Covariance Equation with Immiscible Effects 19

Conclusions and Future Work .. 21

References ... 23

Appendix ... 24

Derivation of Filtered Continuity Equation .. 24

Derivation of Filtered Momentum Equation... 25

Derivation of Reynolds Stress Equation ... 27

Derivation of Turbulent Mass Flux Equation ... 37

Derivation of Density-Specific Volume Covariance Equation ... 40

3

Introduction

Variable density turbulent flows with dispersed phases are ubiquitous in engineering applications

ranging from combustion in automobile and aircraft engines to environmental applications such

as cloud formation. In flows involving multiple materials, we identify the material which has the

largest contribution to the system’s dynamics as the carrier phase and materials having higher

order contributions to the flow dynamics as dispersed phases. Such identification is typically

suitable when the carrier phase volume fraction is much larger than all dispersed phase volume

fractions. However, in many flows even at low dispersed phase volume fraction, dispersed phase

dynamics may have a contribution comparable to that of the carrier phase dynamics. In such

cases, the presence of a dispersed phase may non-trivially couple with carrier phase dynamics to

produce more complicated flow physics. When the dispersed phase material is immiscible with

respect to the carrier phase (i.e. the phases do not mix at the molecular level), additional physics

including the treatment of boundary conditions (slip, penetration, sources of mass, interfacial

tension e.g.) must be accounted for since these effects may have a significant contribution to the

total system’s dynamics. Specifically, the addition of rigid particles to a turbulent fluid flow may

either increase dissipation of turbulent kinetic energy (TKE) or enhance production of TKE

depending on the particle size relative to the turbulent integral scale [13]. As the volume fraction

increases, particles can no longer be treated as independent. In this regime, turbulent dissipation

owing to particle-fluid interaction is accompanied by particle dissipation owing to particle-

particle interaction in the form of collisions [10]. In regions where multiple particles are

separated by scales comparable to or smaller than the un-laden Kolmogorov scale, the laden-

dissipation length scales may be altered [16]. In flows involving droplets or bubbles, there may

exist mass transfer between the dispersed and carrier phase in the form of evaporation or

condensation. Mass transfer in turn affects production of TKE and turbulent mass flux (as we

will show). When density variations and/or compressibility in the carrier phase is significant,

additional production in the Reynolds stress equation may occur. Therefore, the combination of

compressibility and dispersed phase coupling with the carrier phase makes simulating

compressible turbulent flows with immiscible dispersed phases especially challenging.

Particularly, the range of length scales in practical flows of this type makes direct numerical

simulation (DNS) unviable.

A breakthrough in modeling variable density multicomponent turbulent flows came in 1992

when Besnard et al. [1] applied ensemble averaging to the instantaneous mass, momentum, and

energy equations and derived exact transport equations for the Reynolds stresses, the turbulent

mass flux, the density-specific volume covariance, and the turbulent heat flux. These exact

equations were valid for compressible turbulence involving multiple miscible fluid components.

The turbulent mass flux and density specific covariance transport equations were derived as a

means for closing the Reynolds stress equation. With suitable closure models for the remaining

terms in the Reynolds stress equation (dissipation, triple-correlation, pressure-strain, transport

terms), as well as for the unclosed terms in the remaining transport equations, this system of

4

equations are collectively referred to as the BHR model which is capable of capturing

compressible single phase multicomponent effects for many flows [2]. Introduction of the BHR

equations is postponed to the discussion section.

Independently, a large body of work exists on incompressible particle-laden flows where the

carrier phase is treated as a single uniform material. In 1850, Stokes [4] first derived the drag on

a spherical particle moving at a constant speed in a steady fluid in what would later be identified

as the low-Reynolds number or creeping flow limit. From the Oseen equations, Kaplun and

Lagerstrom as well as Proudman and Pearson derived a second-order correction to the non-

dimensional drag coefficient corresponding to the Stokes solution [6]. In 1888, Basset [5] used

successive approximations to derive the equation of motion for a spherical particle beginning

from rest and falling slowly due to gravity in a viscous fluid. Batchelor [6] discusses the role of

oscillating boundary layers on mean fluid element motion and shows that a mean drift of fluid

elements or small particles will exist if there are spatial gradients in either amplitude or phase of

the flow away from a domain boundary. Unsteady effects and curvature in the flow velocity are

accounted for in the particle equation of motion derived by Maxey and Riley [7]. Later, Maxey

[8] examined the motion of particles in a turbulent flow and showed that inertial particles should

experience a net flux into regions of low vorticity and high strain-rate. Squires and Eaton [9]

performed a DNS of particle-laden turbulence and observed the preferential concentration effect

predicted by Maxey [8]. Sundaram and Collins [10] observed enhanced turbulent dissipation due

to particle presence where the peak transient dissipation increased with particle Stokes number.

Burton and Eaton [11] performed a fully-resolved DNS of a turbulent flow over a single particle

and compared the force on the particle with a similar expression to that derived in [7]. The

dominant contribution to the particle-drag is shown to be the steady Stokes drag and all other

drag effects are small for almost all times. The discrepancy between the theoretical drag and

calculated drag suggests the particle-force is more complicated in instances where the particle

diameter is of order Kolmogorov scale or greater [11].

The challenge of studying particle-laden turbulence may be eclipsed by the difficulties in

understanding flows with droplets and bubbles. In such flows, the dispersed phase is no longer

rigid and may deform subject to the stresses exerted by both the carrier phase as well as the

dispersed phase when the volume fraction of the latter is not small. At material interfaces

between disparate immiscible molecular species, interfacial tension will play a dominate role in

flow dynamics in the neighborhood of the interface when the appropriate non-dimensional

parameter is not large (Weber, Capillary, Bond number e.g.). Attempts to model surface tension

have had some success, (see [12] for early work on the subject). However, simulating surface

tension and interfacial dynamics remain a challenging subject. We will not address this topic

further except to mention in our results where such a model would be present. In the case of

deformable droplets surrounded by a gaseous carrier phase of the same material, (e.g. water

droplets in water-vapor) mass-transfer between the two phases may exist under the appropriate

5

thermodynamic conditions. Hereto, we will not present an adequate review except to point out in

our discussion section which terms are owing to mass transfer effects and to briefly discuss

simple models which may capture the salient aspects.

Having briefly examined some of the relevant literature and additional physics present in

variable density turbulent flows with immiscible dispersed phases, we state the objective of this

work. In this paper, we present an extension to the equations first derived by Besnard et al. [1].

After a brief discussion of volume averaging, we present the exact volume-averaged continuity,

momentum, Reynolds stress, turbulent mass-flux, and density-specific volume covariance

equations. These equations are identical to those first derived in [1] by the process of ensemble

averaging, except here there are explicit integral effects accounting for the variation of flow

properties at the time-dependent boundaries of the dispersed phase. The resulting equations will

be valid for compressible variable density turbulence with a distinct dispersed phase. Additional

physics (evaporation, interfacial deformation) are explicit in the integral expressions. The

additional immiscible phase effects represent a perturbation on mean-flow quantities. In the limit

of zero-volume fraction of the dispersed phase, the BHR-equations are recovered. The integral

expressions owing to the dispersed phase represent additional un-closed terms in the mean-flow

equations. Our discussion of these terms is centered around classifying the new terms based on

their expected contribution to the flow dynamics. That is, we attempt to classify the salient

physics for each new term and present hypotheses as to their respective contribution to the

carrier phase (production, transport, dissipation, etc.) Based on the hypothesized effect, we

suggest simple models to close the new terms. In our discussion, the terms “particles” and

“dispersed phase elements” will be used interchangeably. Additional physics (mass-transfer,

interfacial deformation) will be presented as a superimposed effect built into the predominant

effect of the dispersed phase on the carrier. The carrier-dispersed phase coupling then will be

owing to satisfaction of appropriate boundary conditions at the interface between the respective

materials.

6

Discussion

Review of Volume Averaging

Before extending the BHR equations to include immiscible effects, we briefly review the method

of volume averaging to understand how dispersed phased effects will enter the governing

equations. We begin by considering the arbitrary control volume containing multiple materials

shown in Figure 1. Here, the blue stripes represent the carrier phase which may have a spatially

Figure 1: Arbitrary control volume containing carrier phase (stripes) and dispersed phase

(circles/semi-circles).

varying density field owing to compressible effects or problem specification. It is important to

note here that the carrier-phase is treated as miscible so that any immiscible effects are treated as

a separate phase with respect to the carrier fluid. The circular (spherical in 3D) elements

represent the dispersed phase where the carrier-dispersed phase boundary is represented in red. It

should be noted there is no loss in generality in assuming the dispersed phase is made up of

identical spherical particles. So long as the implemented model is able to distinguish between

members of the dispersed phase, the following analysis is valid for dispersed elements of

7

arbitrary shapes and material properties. Having established an open control volume containing

multiple materials, we define the average of some arbitrary flow quantity 1 in (1) viz. [3]:

 ̅ =
1

𝑉
∫ 𝑑𝑉

=
𝑉
𝑉

1

𝑉
∫ 𝑑𝑉

= 𝛼 < > (1)

Here, ̅ is read as the volume or bulk average of , 𝑉 is the total volume contained within the

boundaries of the control volume, 𝑉 is the total volume contained within the control volume

specified in Figure 1 that is occupied exclusively by carrier-phase material, 𝛼 is the carrier-

phase volume fraction, and < > is read as the carrier-phase, or simply the phase average of .

Having defined a volume average, it is now possible to decompose a flow quantity in terms of

a mean and a fluctuating part viz.

 = ̅ + = 𝛼 < > + (2)

Here, ′ is the read as the fluctuation of . By construction, the volume average of the

fluctuating term in (2) is zero, viz.:

 ̅̅ ̅ =
1

𝑉
∫ ′𝑑𝑉

= 0 (3)

As discussed in [1], it is often desirable to express mean quantities weighted by the local carrier-

phase density. In doing so, we may define an alternate volume average called the Favre average

[3]:

 ̃ =
1

𝜌̅ 𝑉
∫ 𝜌 𝑑𝑉

 (4)

Here, ̃ is referred as the Favre, mass, or density-weighted average of and 𝜌 is the carrier-

phase density. The Favre average allows us to define an alternate decomposition for :

 = ̃ + (5)

1
 may be a scalar, vector, or tensor quantity.

8

As a consequence, the Favre average of the fluctuating term in (4) is zero, that is:

 ̃ =
1

𝜌̅ 𝑉
∫ 𝜌

 𝑑𝑉

= 0 (6)

Denoting the instantaneous carrier-phase velocity as 𝑢 , the turbulent mass-flux 𝑎 = 𝑢
 ̅̅̅̅ relates

respective mean definitions of velocity
2
 to each other and independently, the respective velocity

fluctuation definitions viz.:

𝑢̃ = 𝑢̅ + 𝑎 (7)

𝑢
 = 𝑢

 − 𝑎 (8)

The bulk (1) and Favre average (4) notation will be used throughout where preference for one

notation over the other is given based on convenience noting that it is possible to switch between

notations by equation (2) and (5). Having defined a volume average, it remains to specify how

this average will commute with derivatives. This commutation rule will become necessary once

the averaging procedure is applied to the carrier-phase equations of motion. The commutative

rule for spatial and temporal derivatives are given in (9) and (10) respectively:

𝜕

𝜕𝑥

̅̅ ̅̅
=

𝜕 ̅

𝜕𝑥
−

1

𝑉
∫ 𝑛 𝑑𝑆

 (9)

𝜕

𝜕𝑡

̅̅ ̅̅
=

𝜕 ̅

𝜕𝑡
+

1

𝑉
∫ (v 𝑛 + 𝑟̇)𝑑𝑆

 (10)

where the integral terms in (9) and (10) are consequences of Leibnitz’s integral theorem [3].(The

reader is referred to Crowe [3] for more details on the derivation of (9) and (10).) The integrals

in (9) and (10) are taken over the total surface boundary between dispersed and continuous

phases as shown in Figure 1. Therefore, these integrals are understood as the summation of

surface integrals over all dispersed phase elements. In essence, the commutative rule in (9) and

(10) allows the commutation of derivative and averaging operators at the cost of accounting for

the variation of on the along the dispersed phase boundary, 𝑎𝑛𝑑 the fact that the dispersed

phase boundaries are time dependent as the particles may move around within, enter, or exit the

2
 That is, (7) and (8) hold for the velocity means and fluctuations, but not for an arbitrary flow quantity .

9

control volume. However, the boundary of the control volume itself is fixed and therefore makes

no additional integral contribution in (9) and (10). Therefore, red 𝑆 in (9) and (10), which refers

to the red
3
 surfaces in Figure 1 emphasizes that the only dispersed phase surfaces or fractions

thereof within the interior of the control volume contribute to the surface integrals. Here, v is

the velocity of the center of mass of any given particle and 𝑟̇ is the radius rate-of-change of the

particle surface w.r.t. to its center of mass. While variation in along dispersed phase surfaces

allows (9) to be non-zero, (10) may be non-zero when is constant along the surface since 𝑟̇

need not be constant on 𝑆. Note, v is constant on 𝑆 by definition.

We may state this observation more generally and concisely: the integral of any mean flow

quantity along a dispersed phase surface is zero
4
 viz.:

∫ ̅𝑛 𝑑𝑆

= ∫ ̃𝑛 𝑑𝑆

= 0 (11)

The veracity of (11) comes from the definition of the volume average. Upon applying the

averaging operator to a flow quantity, the averaged quantity becomes independent of the volume

of integration. On the closure of the region of integration, the averaged quantity is invariant so

that the averaged quantity must therefore be invariant over each dispersed phase surface. Spatial

variations in mean quantities are then understood as varying from one control volume to the next,

in the limit as the control volume is reduced to a size much smaller than the average length-scale

over which macroscopic flow quantities change. (11) leads to the additional conclusion that

immiscible effects are owing to fluctuations
5
 viz.:

∫ 𝑛 𝑑𝑆

= ∫ (̅ +)𝑛 𝑑𝑆

 = ∫ 𝑛 𝑑𝑆

= ∫ (̃ +)𝑛 𝑑𝑆

= ∫ 𝑛 𝑑𝑆

 (12)

This concludes the necessary discussion of volume averaging. In the next section, we present the

results of applying volume averaging to the flow equations to yield the BHR equations with

explicit integral effects owing to the dispersed phase. We conclude this section by providing a

3
 Red coloring is added to the 𝑆 in (9) and (10) for emphasis. Following, the occurrence of 𝑆 in a surface integral has

the same meaning regardless of color.
4
 The integration must be performed over a closed surface contour and the surface unit normal must be analytic [15].

This will be the case for simple smooth surfaces such as spheres. As long as the dispersed phase elements are small

compared with all flow scales, then all dispersed phase elements will lie entirely within the control volume and each

surface integral will be over a closed path.
5
 Mean flow quantities may be present in dispersed phase integrals, but only when combined with other fluctuating

quantity(s).

10

list of useful identities which are used throughout the discussion and Appendix. For any carrier

phase quantities and we have:

 ̅̅ ̅ = 𝜌 ′′̅̅ ̅̅ ̅̅ ̅ = 0 (𝑎)

 ̅̅ ̅̅ = ̅ ̅ + ̅̅ ̅̅ ̅̅ ()

 ′ ̅̅ ̅̅ ̅ = ′ ′̅̅ ̅̅ ̅̅ = ′ ′′̅̅ ̅̅ ̅̅ ()

 ̅̅ ̅̅ = −𝜌 ̅̅ ̅̅ ̅̅ 𝜌̅ (𝑑)

𝜕 ̅

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅
=

𝜕 ̅

𝜕𝑥
 ̅̅ ̅̅ ()

𝜕 ̃

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅
=

𝜕 ̃

𝜕𝑥
 ̅̅ ̅̅ ()

𝜕 ̃

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅
=

𝜕 ̅

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅
= 0 ()

Where (a)-(d) are given in [1], and (e)-(g) were found during the present investigation.

11

BHR Equations with Immiscible Effects

We now present the exact volume-averaged equations for continuity, momentum, Reynolds

stress, turbulent mass-flux, and density-specific volume covariance. The details regarding the

derivation of these equations can be found in the Appendix. We now present each of these

equations individually and discuss their salient aspects. In each of these equations, we have

colored dispersed-phase effects in red to emphasize the terms that differ from the original BHR-

equations. In the following equations, we will observe that as the continuous phase volume

fraction 𝛼 goes to unity, surface elements will shrink to null so that all dispersed phase effects

will vanish. In addition, all phase-averages will become volume-averages since the carrier-phase

will occupy an entire control volume. Each of the resulting equations will then be identical to

those derived by Besnard et al. [1].

Volume-Averaged Continuity Equation with Immiscible Effects

The volume-averaged continuity equation is given as (13):

𝜕

𝜕𝑡
[𝛼 < 𝜌 >] +

𝜕

𝜕𝑥

[𝛼 < 𝜌 > 𝑢̃] =
1

𝑉
∫ 𝜌 𝑤𝑛 𝑛 𝑑𝑆

= 𝜒 (13)

(13) agrees with the expression derived in Crowe [3]. Evidently, the volume-averaged continuity

equation differs from the BHR-equation by a single term in the form of a mass source denoted as

𝜒. The mass source depends only on the carrier-phase density evaluated along the surface
6
 of

each particle as well as the mass-transfer velocity 𝑤 which is owing to condensation or

evaporation effects. Interestingly, the motion of particles into, out of, and within the control

volume as well as their respective deformations are irrelevant at least with regard to the averaged

continuity equation. Surely the instantaneous carrier-phase velocity within the control volume is

affected by particles since fluid must move out of the way to accommodate particle flux into new

regions where they were not previously. It is with this understanding that (13) represents a series

of cancelling effects. That is, in some regions the particle velocity divergence will be positive

and other regions it will be negative. So too will the deformation of dispersed phase surfaces

contribute to instantaneous continuity. However, the bulk effect of particle movement and

deformation averaged over the control volume makes no contribution to average continuity.

Then, only net sources of mass between the dispersed and carrier-phase may affect the averaged

continuity equation. The term net is used here to emphasize competing effects, that is, nothing in

𝜒 suggests that this term must be a source and in practice it may be a sink of mass from the

6
 Since the carrier-phase density may be ill-defined at material boundaries, the density here is understood as a limit

taking into account carrier-phase density in the neighborhood of the boundary.

12

carrier-phase. The net effect of 𝜒 on any given control volume can be found by performing the

integration in (13) on each particle surface, or fraction there-of within a given control volume

and then summing these contributions. Such an integral evaluation would likely be done using a

numerical integration procedure. This procedure would require knowledge of the geometry of

each dispersed surface (which may vary from one particle to the next in poly-disperse flows) and

a method for determining the mass-transfer rate at a sample of points along each respective

dispersed phase surface. When the details of 𝑆 are complicated or when the calculation of 𝑤 on 𝑆

is impractical, a simple model to account for the bulk effect of the mass-source may be preferred.

Crowe [3] proposes a simple model for the mass source in the averaged continuity equation by

removing details of the variation of in mass-transfer rate at the surface:

𝜒 = −
1

𝑉
∑ ̇

 (14)

The summation in (14) is performed over the k-particles contained at least partially within a

given control volume, and ̇ is the mass rate-of-change of the particle. If each particle is

small compared to the characteristic flow dimensions, the details of each particle’s surface may

be un-important and it may be sufficient to have the same model for ̇ for each particle. Such a

model would be dependent only on the local carrier-phase density, and perhaps on the material

properties of the particle itself.

Volume-Averaged Momentum Equation with Immiscible Effects

 The volume-averaged momentum equation is presented in (15):

𝜕

𝜕𝑡
𝛼 < 𝜌 > 𝑢̃ +

𝜕

𝜕𝑥
𝛼 < 𝜌 > 𝑢̃ 𝑢̃ =

−
𝜕

𝜕𝑥
𝛼 < 𝜌 > ̃ −

𝜕𝑝̅

𝜕𝑥
 +

𝜕𝜏 ̅̅ ̅

𝜕𝑥
 + 𝛼 < 𝜌 > + 𝐶 (15)

The expression for the volume-averaged momentum equation (15) agrees with [3]. Here, 𝑝 is the

pressure, 𝜏 is the deviatoric stress tensor, ̃ = 𝜌 𝑢
 𝑢 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝜌̅ is the generalized Reynolds stress

which shall henceforth be referred to as the Reynolds stress, is the gravitational acceleration,

and 𝐶 is the total contribution of dispersed phase effects on the mean momentum equation and is

given in (16):

13

𝐶 =
1

𝑉
∫ (𝜌 𝑢 𝑤 + 𝑝𝑛 − 𝜏 𝑛)𝑑𝑆

 (16)

The dispersed phase effects in (16) may be categorized into two groups: the first term in the

integrand of (16) is owing to mass-transfer effects between the dispersed and carrier phase while

the remaining terms are owing to variation in stress exerted over each dispersed phase surface. 𝐶

may therefore be decomposed into a thrust contribution owing to mass-transfer, and a drag

contribution owing to stress imbalance. Of course, lift components may be present in the latter

contribution; the term drag is used with the understanding that the net effect of a particle on the

carrier phase is that of flow impedance, and the sense of the resulting drag will likely have some

component orthogonal to a particle’s instantaneous velocity vector. Therefore, upon

decomposition of 𝐶 into thrust and drag effects, we have without approximation:

𝐶 = + (17)

If each particle is non-deformable (i.e. 𝑟̇ is zero
7
), then the thrust term may be modeled viz. [3]:

 = −
1

𝑉
∑v ̇

 (18)

Such a model is expected to be a reasonable approximation when the dispersed phase elements

are small compared with flow scales, so that the details of each particle’s geometry are

unimportant. Similarly, if the dispersed phase elements are much smaller than relevant flow

scales, specifically the turbulent Kolmogorov scales [11], the drag term in (17) may be modeled

via a relationship similar to that derived by Maxey and Riley [7] viz.:

 = + + + + (19)

7
 Surely 𝑟̇ will be coupled to mass transfer effects since gain or loss of mass over long enough times will result in a

measurable change in the volume of a dispersed phase element, and as a consequence, the position of its surface

w.r.t. to its center of mass. Therefore, we must assume the timescale over which 𝑟 changes is much greater than

other relevant timescales (mass-transfer and flow timescales). When this assumption fails, an additional term in the

summation in (18) of the form 𝑟̇ ̇ will become necessary.

14

Where is the gravitational force, is the steady Stokes drag which may be modified

for finite Reynolds number effects [11], and the remaining terms are unsteady effects due to

history, added mass, and combined pressure gradient and viscous stresses respectfully. When the

particle Reynolds number is small, the Stokes term will be the primary contribution to the drag

and the remaining terms will be small except possibly at small times [11]. However, when the

Mach number is not small so that compressibility effects are important or when particles are not

small compared to the smallest turbulent scales, the modeled drag equation would require

additional treatment. Additionally, deformable particles have the ability to store strain-energy at

their boundary with the carrier-phase. The model for the pressure and viscous terms in (16)

would then also require treatment of interfacial tension effects using [12] for example.

Reynolds Stress Equation with Immiscible Effects

The exact equation for the Reynolds stresses, including immiscible effects is given in (20):

𝛼 < 𝜌 > ̃ +

𝛼 < 𝜌 > 𝑢̃ ̃ = (20)

−< 𝜌 > ̃

𝜕𝑢̃

𝜕𝑥
− 𝛼 < 𝜌 > ̃

𝜕𝑢̃

𝜕𝑥
 + 𝑎

𝜕𝑝̅

𝜕𝑥
+ 𝑎

𝜕𝑝̅

𝜕𝑥
− 𝑎

𝜕𝜏̃

𝜕𝑥
 − 𝑎

𝜕𝜏̃
𝜕𝑥

−

 𝛼 < 𝜌 𝑢

 𝑢
 𝑢

 > −𝛼 −

𝛼 < 𝑝 𝑢

 > −

 𝛼 < 𝑝 𝑢

 >

+

 𝛼 < 𝑢

 𝜏
 > +

 𝛼 < 𝑢

 𝜏
 >

+ 𝛼 < 𝑝
𝜕𝑢

𝜕𝑥
> + 𝛼 < 𝑝

𝜕𝑢

𝜕𝑥
> −𝛼 < 𝜏

𝜕𝑢

𝜕𝑥
> −𝛼 < 𝜏

𝜕𝑢

𝜕𝑥
>

+ + −

and,

Production

Transport

Pressure-Strain Dissipation

Dispersed Phase Effects

15

 =
1

𝑉
∫ [𝜌 𝑤(𝑢

 𝑢
 − 𝑢̃ 𝑢̃)]

𝑑𝑆 (21)

 =
1

𝑉
∫ 𝑝′(𝑢

 𝑛 + 𝑢
 𝑛)

𝑑𝑆 (22)

 =
1

𝑉
∫ (𝑢

 𝜏
 + 𝑢

 𝜏
)𝑛

𝑑𝑆 (23)

If the density of the carrier fluid is taken to be constant and no mass-transfer takes place at

surfaces separating the carrier and dispersed phases, the Reynolds stress equation (20) agrees

with the expression derived in [3]. In the absence of immiscible effects all-together, (20) will

reduce to the expression originally derived in [1]. The unclosed production, transport, and

pressure-strain terms in (20) may be closed using direct models discussed in [2]. The turbulent

mass-flux, 𝑎 , appearing as a coefficient on the spatial derivatives of mean pressure and viscous

stress is also unclosed; its closure comes via a transport equation discussed in the next section.

The dissipation term in (20) may be closed using a compressible analog to the dissipation

equation derived in [14]. Then, as with the momentum equation, the dispersed phase contribution

to the Reynolds stress may be categorized as owing to mass-transfer effects (21) and stress

effects (22), (23). (22) and (23) are significant since they establish that rigid, non-evaporating

particles may still contribute as a source of Reynolds stress. The mass-transfer term (21) may be

re-written in a more convenient form for modeling. Without approximation, we have:

 =
1

𝑉
∫ [𝜌 𝑤(𝑢

 𝑢
 − 𝑢̃ 𝑢̃)]

𝑑𝑆

 =
1

𝑉
∫ [𝜌 𝑤(𝑢 𝑢 − 𝑢̃ 𝑢 − 𝑢̃ 𝑢 + 𝑢̃ 𝑢̃ − 𝑢̃ 𝑢̃)]

𝑑𝑆

 =
1

𝑉
∫ 𝜌 𝑤𝑢 𝑢

𝑑𝑆 − 𝑢̃
1

𝑉
∫ 𝜌 𝑤𝑢

𝑑𝑆 − 𝑢̃
1

𝑉
∫ 𝜌 𝑤𝑢

𝑑𝑆

 =
1

𝑉
∫ 𝜌 𝑤{v + (𝑟̇ + 𝑤)𝑛 }{v + (𝑟̇ + 𝑤)𝑛 }

𝑑𝑆

− 𝑢̃
1

𝑉
∫ 𝜌 𝑤{v + (𝑟̇ + 𝑤)𝑛 }

𝑑𝑆 − 𝑢̃
1

𝑉
∫ 𝜌 𝑤{v + (𝑟̇ + 𝑤)𝑛 }

𝑑𝑆

16

 =
1

𝑉
∫ 𝜌 𝑤{v v + v (𝑟̇ + 𝑤)𝑛 + v (𝑟̇ + 𝑤)𝑛 + (𝑟̇ + 𝑤) 𝛿 }

𝑑𝑆

− 𝑢̃
1

𝑉
∫ 𝜌 𝑤{v + (𝑟̇ + 𝑤)𝑛 }

𝑑𝑆 − 𝑢̃
1

𝑉
∫ 𝜌 𝑤{v + (𝑟̇ + 𝑤)𝑛 }

𝑑𝑆 (24)

If 𝑟̇ is taken to be zero, (24) may be expressed in modeled form using expressions analogous to

(14) and (18):

 =

−
1

𝑉
∑v v ̇

−
1

𝑉
∑

v (̇)
 𝑛

𝜌

−
1

𝑉
∑

v (̇)
 𝑛

𝜌

−
1

𝑉
∑

(̇)

(𝜌) ()

𝛿

 −
1

𝑉
∑𝑢̃ v ̇

−
1

𝑉
∑

𝑢̃ (̇)
 𝑛

𝜌

−
1

𝑉
∑𝑢̃ v ̇

−
1

𝑉
∑

𝑢̃ (̇)
 𝑛

𝜌

 (25)

Here, 𝜌 and are respectively the carrier phase density and surface area at the particle.

The most prominent feature of (25) is that the dispersed phase source term owing to mass-

transfer has a cubic dependence on the mass-transfer rate ̇. If the mass-transfer rate is not

small, this source term may have a substantial contribution to production. Further, inspection of

(24) reveals the cubic contribution is directly to the TKE while the linear and quadratic mass-

transfer terms affect both the diagonal and off-diagonal components of the Reynolds stress. It

should be noted that (25) requires only an external model for ̇ since 𝑢̃ is closed and v may

be accounted for via Lagrangian particle tracking.

We now turn our attention to modeling the pressure and viscous work terms in (22) and (23).

Both of these equations depend on the product of two fluctuating quantities and should yield

similar modeled forms. Examining the first term in the integrand of (22), we have:

1

𝑉
∫ 𝑝 𝑢

 𝑛

𝑑𝑆 =
1

𝑉
∫ 𝑝 (𝑢 − 𝑢̃)𝑛

𝑑𝑆 =
1

𝑉
∫ 𝑝 𝑢 𝑛

𝑑𝑆 − 𝑢̃

1

𝑉
∫ 𝑝 𝑛

𝑑𝑆

=
1

𝑉
∫ 𝑝 {v + (𝑟̇ + 𝑤)𝑛 }

𝑛 𝑑𝑆 − 𝑢̃

1

𝑉
∫ 𝑝 𝑛

𝑑𝑆 (26𝑎)

17

Taking 𝑟̇ = 0, (26a) may be expressed as [3]:

 −
1

𝑉
∑v

−
1

𝑉
∑

 ̇ 𝑛

𝜌

− 𝑢̃

1

𝑉
∑

 (26)

Here,

 is the net fluid pressure force in the direction on the particle. The remaining

term in (22) as well as the terms in (23) may be cast into an analogous form so that the total

contribution by pressure (22) and viscous work (23) interaction with the dispersed phase may be

modeled as (27):

−
1

𝑉
∑v

−
1

𝑉
∑

 ̇ 𝑛

𝜌

− 𝑢̃

1

𝑉
∑

−
1

𝑉
∑v

−
1

𝑉
∑

 ̇ 𝑛

𝜌

− 𝑢̃
1

𝑉
∑

 (27)

In this case, is interpreted as the net fluid force in the direction on the particle owing

to pressure and viscous stresses. Therefore, a suitable expression for may be given by (19).

All other terms in (27) are either closed or may be determined through methods discussed

previously. We stress there is no loss of generality in neglecting the 𝑟̇ term. In flows where rapid

variation of the interface between the dispersed and carrier phase may exist, such as in bubbly

flows, 𝑟̇ may be a significant term. Additional terms of the form 𝑟̇ will then be present in (27) as

well as (18) and (25). So long as a reasonable model exists for 𝑟̇, these expressions for dispersed

phase effects will still be considered closed.

Turbulent Mass Flux Equation with Immiscible Effects

We now present the transport equation for the turbulent mass flux or density-velocity correlation,

𝑎 , with explicit integral terms accounted for immiscible dispersed phase effects (28):

𝜕𝜌 ̅̅̅𝑎

𝜕𝑡
+

𝜕𝜌 ̅̅̅𝑢̃ 𝑎

𝜕𝑥

= −
𝜕𝜎 ̅̅̅̅

𝜕𝑥
− ̃

𝜕𝜌 ̅̅̅

𝜕𝑥
+ 𝜌 ̅̅̅

𝜕

𝜕𝑥
𝑎 𝑎 − 𝜌 ̅̅̅𝑎

𝜕𝑢̅

𝜕𝑥
− 𝜌 ̅̅̅

𝜕

𝜕𝑥
(
𝜌 𝑢

 𝑢 ̅̅ ̅̅ ̅̅ ̅̅

𝜌 ̅̅̅
) − 𝜌 ̅̅̅ (

1

𝜌
)
 𝜕𝜎

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

18

−𝜌 ̅̅̅𝑢

̅̅ ̅̅ ̅̅ ̅̅
− + 𝑎 𝜒 (28)

Where is given as (29):

 = (𝑢̃ ∙ 𝜒 − 𝐶)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝜌 ̅̅̅
1

𝑉
∫ 𝑢

 𝑤𝑛 𝑛 𝑑𝑆

− (+ 1)
1

𝑉
∫ 𝜎

 𝑛 𝑑𝑆

 (29)

Neglecting immiscible effects, (28) agrees with the miscible 𝑎 equation first derived in [1]

except for an additional dilatation term which was assumed to be small and therefore neglected

in the original derivation. Models for the unclosed triple-product and specific volume-stress

divergence terms in (28) are discussed in [2]. The 𝑎 𝜒 term in (28) may be modeled using (14)

scaled by 𝑎 . The first term in (29) is the volume average of a purely mass-transfer effect, 𝑢̃ ∙ 𝜒,

and a term involving both mass-transfer as well as pressure and viscous effects, 𝐶 , as shown in

(16). This term is a natural consequence of the derivation procedure discussed in the Appendix.

However, referring to the definition of the volume average in (1), the region of volume

integration is disjoint from the region of surface integration except at the surface of each particle.

We will not dwell on this point more except to say that interpretation of this term is ongoing and

that it has not been formally proved whether the volume integral of surface integral effects will

be zero by Lebesgue arguments or will have an effect analogous to averaging a dispersed phase

effect over an entire control volume. A similar term will be found in the equation, which will

also be a natural consequence of its derivation. This term will also require further investigation

before it can be formulated as a proper model. Using similar arguments as those used in

modeling the immiscible effects in the previous transport equations, the remaining terms in (29)

may be expressed as (30):

−
1

𝑉
∑v ̇

−
1

𝑉
∑

(̇)
 𝑛

𝜌

− 𝑢̃

1

𝑉
∑ ̇

+ (+ 1)
1

𝑉
∑

 (30)

In (30), = −𝜌 ′ ̅̅ ̅̅ ̅̅ is the density-specific volume covariance, the particle velocity v may be

found through particle-tracking, is the net combination of pressure and viscous drag on the

 particle and may be modeled using (19), ̇ is the mass-transfer rate of the particle and

may be found via an appropriate model, and 𝑟̇ terms have been neglected under the assumptions

19

previously discussed. Further investigation will be needed to understand and ultimately close the

first term in (29) which will result in a fully closed model for the immiscible effects in the 𝑎

equation.

Density-Specific Volume Covariance Equation with Immiscible Effects

Finally, we present the transport equation for the density-specific volume covariance , including

explicit and exact representation of the immiscible dispersed phase effects (31):

𝜕

𝜕𝑡
+ 𝑢̅

𝜕

𝜕𝑥
+ (

 + 1

𝜌̅
)

𝜕

𝜕𝑥
𝜌 ̅̅̅𝑎 + 𝜌 ̅̅̅

𝜕

𝜕𝑥
 𝑢 ′̅̅ ̅̅ ̅̅ − 2𝜌 ̅̅̅

𝜕𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅
= (31)

Where the sum of the immiscible effects is expressed as (32):

 = −
1

𝑉
∫ 𝜌

 𝑤𝑛 𝑛 𝑑𝑆

+ 𝜒̅̅ ̅ − (2 + 1)
1

𝑉
∫ 𝑢

 𝑛 𝑑𝑆

 (32)

In the limit of fully miscible turbulence, the immiscible effects in (31) are neglected and the

resulting equation is exactly the expression originally derived in [1]. Models for the specific

volume-velocity correlation and dilatation terms in (31) are discussed in [2].

We now examine (32) to propose suitable models for the immiscible effects in the equation

(31). The middle term in (32) exists if and only if the particles experience mass-transfer, as is

evident in the expression for 𝜒 (13). However, this term involves the volume average of a surface

integral effect. As discussed in the context of the 𝑎 equation, interpreting this term requires

further investigation. The first term in (32) will be non-zero only when there is mass transfer

between the dispersed and carrier-phase. We express this term in a more convenient form for

modeling (33):

1

𝑉
∫ 𝜌

 𝑤𝑑𝑆

=
1

𝑉
∫ (𝜌 − 𝜌̅) 𝑤𝑑𝑆

=
1

𝑉
∫ (1 − 𝜌̅)𝑤𝑑𝑆

 (33)

Therefore, an appropriate model for (33) may be expressed in the form (34):

20

1

𝑉
∫ (1 − 𝜌̅)𝑤𝑑𝑆

 −
1

𝑉
∑ ̇

 𝜌 −
1

𝑉
∑ ̇

 𝜌̅ (34)

Here, 𝜌 and 𝜌̅ are respectively the instantaneous and average carrier-phase density evaluated

at the particle location.

Finally, we may re-write the final term in (32) viz.:

(2 + 1)
1

𝑉
∫ 𝑢

 𝑛 𝑑𝑆

= (2 + 1)
1

𝑉
∫ 𝑢 𝑛 𝑑𝑆

= (2 + 1)
1

𝑉
∫ {v + (𝑟̇ + 𝑤)𝑛 }𝑛 𝑑𝑆

 (35)

The v term is constant on 𝑆 and therefore makes no contribution to the integral in (35). Taking

into account the other immiscible effects in (32), we arrive at the following observation: if the 𝑟̇

term in (35) is neglected, then only mass-transfer between the dispersed and carrier phase

contributes to a source of . In the limit of rigid, non-evaporating (or condensing) particles, the

immiscible equation is identical to the miscible equation. For completeness, a potential

model for (35) is given in (36):

(2 + 1)
1

𝑉
∫ {v + (𝑟̇ + 𝑤)𝑛 }𝑛 𝑑𝑆

 −(2 + 1) {
1

𝑉
∑𝑟̇

+
1

𝑉
∑ ̇

 𝜌 } (36)

Here, 𝑟̇ and are respectively the radius rate-of-change surface area of the particle. Upon

developing a suitable model for the 𝜒̅̅ ̅ in (32), the immiscible effects in the equation may be

considered closed.

This concludes our presentation of the mass, momentum, Reynolds stress, turbulent mass flux,

and density-specific volume covariance equations with explicit integral terms owing to

immiscible effects. More details on the derivation of these respective equations can be found in

the Appendix.

21

Conclusions and Future Work

In this report, we extended the work of Besnard et al. [1] and Crowe [3] by deriving explicit

integral source terms owing to immiscible effects for the volume-averaged continuity and

momentum equations, as well as the Reynolds stress, turbulent mass-flux, and density-specific

volume covariance transport equations. We then proposed models to close the integral terms

using expressions analogous to those discussed in [3]. Incorporating models for the immiscible

effects along with models [2] developed for the carrier-phase un-closed turbulent quantities, the

resulting set of coupled non-linear PDEs forms a closed set of equations that may be simulated.

These equations are valid for compressible multiphase turbulent flows where a definable

interface separates the primary carrier phase fluid with discrete pieces of dispersed phase

material (particles, droplets, bubbles). The models for the immiscible terms and the method of

volume averaging itself are valid when the pieces of dispersed phase material are small in

comparison with relevant flow scales. Specifically, the drag term proposed by Maxey and Riley

[7] which is used in several of the model equations should be valid provided the dispersed phase

is made up of rigid particles much smaller than the Kolmogorov scales [11]. These extended

BHR equations are not expected to be valid when the dispersed phase volume fraction becomes

large or when the dispersed phase elements become comparable to the smallest flow scales. In

the case of deformable droplets or bubbles, a model for 𝑟̇ becomes necessary. When the flow

involves two phases of the same molecular component—water liquid and vapor for example—

mass transfer effects may exist which require modeling.

Following Crowe’s work [3], we have shown the only contribution to mean continuity takes the

form of a mass-source while mean momentum involves both mass-transfer as well as pressure

and viscous stress effects. The immiscible integrals in the Reynolds stress and turbulent mass-

flux equations may be decomposed into sources involving only mass-transfer or stress effects. If

the dispersed phase is comprised of evaporating or condensing material whose surface changes

over much longer time scales than the characteristic rate of mass-transfer (i.e. 𝑟̇ 𝑤), then only

mass-transfer effects contribute to sources of density-specific volume covariance .

Two immiscible terms, one in the 𝑎 equation and one in the equation involve the volume

averages of flow quantities integrated over dispersed phase surfaces. These barred-terms are

composed of classifiable effects including mass-transfer and stress effects, but the terms as a

whole require further investigation before they can be modeled. In the present work, there was

insufficient time to derive the immiscible effects for the turbulent heat flux equation originally

derived in [1]. Future work should also focus on extending the dissipation equation derived by

Schwarzkopf et al. [14] for incompressible particle-laden flows to include both the effects of

compressibility and mass-transfer. In this report, we have proposed simple models for the

immiscible effects resulting from the volume averaging procedure. However, validation of these

models is necessary to assess their applicability in various flow regimes.

22

Acknowledgements

I would like to thank my mentor John Schwarzkopf for tremendously valuable support and

feedback. I offer my gratitude to my colleagues Sasha Tan-Torres and Dan Israel for their

thoughtful comments. I am grateful to Scott Runnels for organizing the 2013 Computational

Physics workshop and inviting me to participate this summer. This work would not be possible

without the support allocated to the workshop by the Los Alamos National Laboratory. Los

Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National

Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-

06NA25396.

23

References

[1] D. Besnard, F. H. Harlow, R. M. Rauenzahn, C. Zemach, “Turbulence Transport Equations

for Variable-Density Turbulence and Their Relationship to Two-Field Models,” LA-UR-12303,

Los Alamos National Laboratory, Los Alamos, NM, 1992.

[2] J. D. Schwarzkopf, D. Livescu, R. A. Gore, R. M. Rauenazhn, J. R. Ristorcelli (2011):

Application of a second-moment closure model to mixing processes involving multicomponent

miscible fluids, Journal of Turbulence, 12, N49.

[3] C. Crowe, J.D. Schwarzkopf, M. Sommerfeld, Y. Tsuji, Multiphase Flows with Droplets and

Particles, 2
nd

 Ed., CRC Press, 2012.

[4] G. G. Stokes, “On the effect of the internal friction of fluids on the motion of pendulums,”

Trans. Phil. Soc. Vol. IX. p.8.

[5] A. B. Basset, “On the Motion of a Sphere in a Viscous Liquid,” Phil. Trans. R. Soc. A, Vol.

179, (1888), pp. 43-63.

[6] G.K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, 1967.

[7] M.R. Maxey, J.J. Riley, “Equation of motion for a small rigid sphere in a nonuniform flow,”

Phys. Fluids 26, 883 (1983); doi: 10.1063/1.864230.

[8] M.R. Maxey (1987). “The gravitational settling of aerosol particles in homogeneous

turbulence and random flow fields.” Journal of Fluid Mechanics, 174, pp. 441-465

doi:10.1017/S0022112087000193.

[9] K.D. Squires, J. K. Eaton, (1990). “Particle Response and turbulence modification in

isotropic turbulence,” Phys. Fluids A 2 (7), pp. 1191-1203.

[10] S. Sundaram, L. R. Collins (1999) “A numerical study of modulation of isotropic turbulence

by suspended particles,” Journal of Fluid Mechanics, 379, pp 105-143.

[11] T.M. Burton, J.K. Eaton, “Fully resolved simulations of particle-turbulence interaction,” J.

Fluid Mech. (2005) vol. 545, pp.67-111. Doi:10.1017/S0022112005006889.

[12] J. U. Brackbill, D. B. Kothe, C. Zemach, “A Continuum Method for Modeling Surface

Tension,” J. Comp. Phys. 100, 335-354 (1992).

[13] R. A. Gore, C. T. Crowe, “Effect of particle size on modulating turbulent intensity,” Int. J.

Multiphase Flow, Vol. 15, No.2, pp. 279-285, 1989.

[14] J.D. Schwarzkopf, C.T. Crowe, P. Dutta, “A Turbulence Dissipation Model for Particle

Laden Flow,” AIChE J, Vol. 55, No. 6, 1416-1425, 2009, doi 10.1002/aic.11773.

[15] S.D. Fisher, Complex Variables, 2
nd

 Ed. Dover Publications, 1999.

[16] S. Sundaram, and L. R. Collins (1997). “Collision statistics in an isotropic particle-laden

Turbulent suspension. Part 1. Direct numerical simulations.” Journal of Fluid Mechanics, 335,

pp. 75-109 doi:10.1017/S0022112096004454.

24

Appendix

Derivation of Filtered Continuity Equation

The continuity equation for carrier phase is written as:

𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥
𝜌 𝑢 = 0 (. 1)

Where 𝜌 and 𝑢 are respectively the instantaneous carrier phase density and velocity. Applying

volume averaging to each of the terms on the left hand side of (A.1), we have:

𝜕𝜌

𝜕𝑡

̅̅ ̅̅ ̅
=

𝜕𝜌 ̅̅̅

𝜕𝑡
+

1

𝑉
∫ 𝜌 (v 𝑛 + 𝑟̇)𝑑𝑆

 (. 2)

And,

𝜕

𝜕𝑥
𝜌 𝑢

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
=

𝜕𝜌 𝑢 ̅̅ ̅̅ ̅̅

𝜕𝑥
−

1

𝑉
∫ 𝜌 𝑢 𝑛 𝑑𝑆

 (. 3)

Using the definitions (1) and (4), we have:

𝜕

𝜕𝑡
𝛼 < 𝜌 > +

𝜕

𝜕𝑥
𝛼 < 𝜌 > 𝑢̃ =

1

𝑉
∫ 𝜌 𝑢 𝑛 𝑑𝑉

−
1

𝑉
∫ 𝜌 (v 𝑛 + 𝑟̇)𝑑𝑆

 (. 4)

Finally, the carrier phase velocity at the dispersed phase surface can be expressed as 𝑢 | = v +
(𝑟̇ + 𝑤)𝑛 [3], where 𝑤 is the mass-transfer velocity, so that (A.4) becomes:

𝜕

𝜕𝑡
𝛼 < 𝜌 > +

𝜕

𝜕𝑥
𝛼 < 𝜌 > 𝑢̃ =

1

𝑉
∫ 𝜌 𝑤𝑑𝑆

 = 𝜒 (. 5)

Where 𝜒 is a source term accounting for mass transfer between the carrier and dispersed phase

owing to evaporation, condensation, or other effects.

25

Derivation of Filtered Momentum Equation

The momentum equation for the carrier phase is written in (A.6):

𝜕

𝜕𝑡
𝜌 𝑢 +

𝜕

𝜕𝑥
𝜌 𝑢 𝑢 =

𝜕

𝜕𝑥
𝜎 + 𝜌 (. 6)

Where 𝜎 = −𝑝𝛿 + 𝜏 , is the fluid stress tensor, 𝑝 is the pressure, 𝜏 is the deviatoric stress

tensor, and is the gravitational acceleration. Applying volume averaging term-by-term in

(A.6), we have:

𝜕

𝜕𝑡
𝜌 𝑢

̅̅ ̅̅ ̅̅ ̅̅ ̅
=

𝜕

𝜕𝑡
𝜌 𝑢 ̅̅ ̅̅ ̅̅ +

1

𝑉
∫ 𝜌 𝑢 (v 𝑛 + 𝑟̇)𝑑𝑆

 (. 7)

𝜕

𝜕𝑥
𝜌 𝑢 𝑢

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
=

𝜕

𝜕𝑥
𝜌 𝑢 𝑢 ̅̅ ̅̅ ̅̅ ̅̅ −

1

𝑉
∫ 𝜌 𝑢 𝑢 𝑛 𝑑𝑆

 (. 8)

𝜕

𝜕𝑥
𝜎

̅̅ ̅̅ ̅̅ ̅̅
= −

𝜕𝑝

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅
 +

𝜕𝜏

𝜕𝑥

̅̅ ̅̅ ̅
= −

𝜕𝑝̅

𝜕𝑥
 +

𝜕𝜏 ̅̅ ̅

𝜕𝑥
 +

1

𝑉
∫ (𝑝𝑛 − 𝜏 𝑛)𝑑𝑆

 (. 9)

 𝜌 ̅̅ ̅̅ ̅̅ = 𝜌 ̅̅̅ (. 10)

The 𝜌 𝑢 𝑢 ̅̅ ̅̅ ̅̅ ̅̅ term in (A.8) requires further treatment. Using the Favre decomposition, this can be

expressed using in terms of closed terms, the bulk-average density and Favre average velocity,

and the Reynolds stresses viz.

𝜌 𝑢 𝑢 ̅̅ ̅̅ ̅̅ ̅̅ = 𝜌 (𝑢̃ + 𝑢
)(𝑢̃ + 𝑢)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝜌 𝑢̃ 𝑢̃ ̅̅ ̅̅ ̅̅ ̅̅ + 𝜌 𝑢̃ 𝑢 ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝜌 𝑢
 𝑢̃ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝜌 𝑢

 𝑢 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (. 11)

The bulk-averaged velocity 𝑢̃ is independent of the volume average. By construction, the

density-weighted volume average of a fluctuation 𝑢
 is zero, so that the second and third terms

on the right-hand side of (A.11) are zero. We therefore have:

26

𝜌 𝑢 𝑢 ̅̅ ̅̅ ̅̅ ̅̅ = 𝜌 (𝑢̃ + 𝑢
)(𝑢̃ + 𝑢)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝜌 ̅̅̅𝑢̃ 𝑢̃ + (. 12)

Where = 𝜌 𝑢
 𝑢 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ is the mass-weighted Reynolds stress. The filtered momentum equation

can now be written:

𝜕

𝜕𝑡
𝜌 𝑢 ̅̅ ̅̅ ̅̅ +

𝜕

𝜕𝑥
𝜌 ̅̅̅𝑢̃ 𝑢̃ +

𝜕

𝜕𝑥
 = −

𝜕𝑝̅

𝜕𝑥
 +

𝜕𝜏 ̅̅ ̅

𝜕𝑥
 + 𝜌 ̅̅̅ +

1

𝑉
∫ (𝑝𝑛 − 𝜏 𝑛)𝑑𝑆

+
1

𝑉
∫ 𝜌 𝑢 𝑢 𝑛 𝑑𝑆

 −
1

𝑉
∫ 𝜌 𝑢 (v 𝑛 + 𝑟̇)𝑑𝑆

 (. 13)

The filtered momentum equation (A.13) may also be expressed as (A.14):

𝜕

𝜕𝑡
𝛼 < 𝜌 > 𝑢̃ +

𝜕

𝜕𝑥
𝛼 < 𝜌 > 𝑢̃ 𝑢̃ = −

𝜕

𝜕𝑥
𝛼 < 𝜌 > ̃ −

𝜕𝑝̅

𝜕𝑥
 +

𝜕𝜏 ̅̅ ̅

𝜕𝑥

+ 𝛼 < 𝜌 > + 𝐶 (. 14)

Here, 𝐶 =

∫ (𝜌 𝑢 𝑤 + 𝑝𝑛 − 𝜏 𝑛)𝑑𝑆

 and ̃ = 𝜌 𝑢
 𝑢 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝜌̅ is the normalized Reynolds

stress. The second and third integral terms in (A.13) were reduced via the same procedure

employed in re-writing (A.4) as (A.5).

27

Derivation of Reynolds Stress Equation

The transport equation for the Reynolds stresses is obtained by computing the first cross-

moments of the momentum equation and subtracting the corresponding means viz.

{ 𝑆} = 𝑢 ∙ 𝑆 + 𝑢 ∙ 𝑆
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − (𝑢̃ ∙ 𝑆̅̅ ̅̅

 + 𝑢̃ ∙ 𝑆̅̅ ̅̅
) (. 15)

Where 𝑆 is the component of the un-filtered momentum equation. Starting with the first

two terms in (A.15), we respectfully have:

𝑢 ∙ 𝑆 = 𝑢 ∙ {
𝜕

𝜕𝑡
𝜌 𝑢 +

𝜕

𝜕𝑥
𝜌 𝑢 𝑢 =

𝜕

𝜕𝑥
𝜎 + 𝜌 } (. 16)

And,

𝑢 ∙ 𝑆 = 𝑢 ∙ {
𝜕

𝜕𝑡
𝜌 𝑢 +

𝜕

𝜕𝑥
𝜌 𝑢 𝑢 =

𝜕

𝜕𝑥
𝜎 + 𝜌 } (. 17)

Using the product rule of differentiation, and writing out the stress tensor explicitly, the sum of

(A.16) and (A.17) can be expressed as (A.18):

𝜕

𝜕𝑡
𝜌 𝑢 𝑢 +

𝜕

𝜕𝑥
𝜌 𝑢 𝑢 𝑢 = −𝑢

𝜕𝑝

𝜕𝑥
− 𝑢

𝜕𝑝

𝜕𝑥
+ 𝑢

𝜕𝜏

𝜕𝑥
+ 𝑢

𝜕𝜏
𝜕𝑥

+ 𝜌 𝑢 + 𝜌 𝑢 (. 18)

Volume averaging (A.18) term-by-term, we have:

𝜕

𝜕𝑡
𝜌 𝑢 𝑢

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
=

𝜕

𝜕𝑡
 𝜌 𝑢 𝑢 ̅̅ ̅̅ ̅̅ ̅̅ +

1

𝑉
∫ 𝜌 𝑢 𝑢 (v 𝑛 + 𝑟̇)𝑑𝑆

 (. 19)

In the previous section, we showed 𝜌 𝑢 𝑢 ̅̅ ̅̅ ̅̅ ̅̅ = 𝜌 ̅̅̅𝑢̃ 𝑢̃ + 𝜌̅ ̃ , so that (A.19) may be re-written as

(A.20):

28

𝜕

𝜕𝑡
𝜌 𝑢 𝑢

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
=

𝜕

𝜕𝑡
 𝜌 ̅̅̅𝑢̃ 𝑢̃ +

𝜕

𝜕𝑡
𝜌̅ ̃ +

1

𝑉
∫ 𝜌 𝑢 𝑢 (v 𝑛 + 𝑟̇)𝑑𝑆

 (. 20)

Averaging the second term in (A.18), we have:

𝜕

𝜕𝑥
𝜌 𝑢 𝑢 𝑢

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
=

𝜕

𝜕𝑥
 𝜌 𝑢 𝑢 𝑢 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ −

1

𝑉
∫ 𝜌 𝑢 𝑢 𝑢 𝑛 𝑑𝑆

 (. 21)

The first term on the right-hand side of (A.21) can be decomposed further viz.

𝜌 𝑢 𝑢 𝑢 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝜌 (𝑢̃ + 𝑢
)(𝑢̃ + 𝑢)(𝑢̃ + 𝑢

)̅̅ =

𝜌 ̅̅̅𝑢̃ 𝑢̃ 𝑢̃ + 𝜌 𝑢
 𝑢̃ 𝑢̃

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝜌 𝑢 𝑢̃ 𝑢̃
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝜌 𝑢

 𝑢̃ 𝑢̃ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ +

𝜌 𝑢̃ 𝑢 𝑢
 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝜌 𝑢̃ 𝑢

 𝑢
 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝜌 𝑢̃ 𝑢

 𝑢 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝜌 𝑢
 𝑢 𝑢

 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

= 𝜌 ̅̅̅𝑢̃ 𝑢̃ 𝑢̃ + 𝑢̃ 𝜌̅ ̃ + 𝑢̃ 𝜌̅ ̃ + 𝑢̃ 𝜌̅ ̃ + 𝜌 𝑢
 𝑢 𝑢

 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (. 22)

(A.21) can now be expressed as (A.23):

𝜕

𝜕𝑥
𝜌 𝑢 𝑢 𝑢

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
=

𝜕

𝜕𝑥
𝜌 ̅̅̅𝑢̃ 𝑢̃ 𝑢̃ +

𝜕

𝜕𝑥
(𝑢̃ 𝜌̅ ̃ + 𝑢̃ 𝜌̅ ̃ + 𝑢̃ 𝜌̅ ̃) +

𝜕

𝜕𝑥
 𝜌 𝑢

 𝑢 𝑢
 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ −

1

𝑉
∫ 𝜌 𝑢 𝑢 𝑢 𝑛 𝑑𝑆

 (. 23)

Continuing our application of volume averaging to (A.18), we now consider the pressure and

deviatoric stress terms:

29

𝑢

𝜕𝑝

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅
=

𝜕

𝜕𝑥
𝑝𝑢

̅̅ ̅̅ ̅̅ ̅̅ ̅
− 𝑝

𝜕𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅
=

𝜕

𝜕𝑥
 𝑝𝑢 ̅̅ ̅̅̅ −

1

𝑉
∫ 𝑝𝑢 𝑛 𝑑𝑆

− 𝑝
𝜕𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅
 (. 24)

𝑢
𝜕𝑝

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅
=

𝜕

𝜕𝑥
𝑝𝑢

̅̅ ̅̅ ̅̅ ̅̅ ̅
− 𝑝

𝜕𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅
=

𝜕

𝜕𝑥
 𝑝𝑢 ̅̅ ̅̅̅ −

1

𝑉
∫ 𝑝𝑢 𝑛 𝑑𝑆

− 𝑝
𝜕𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅
 (. 25)

𝑢

𝜕𝜏

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅
=

𝜕

𝜕𝑥
𝜏 𝑢

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
− 𝜏

𝜕𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅
=

𝜕

𝜕𝑥
 𝜏 𝑢 ̅̅ ̅̅ ̅̅ −

1

𝑉
∫ 𝜏 𝑢 𝑛 𝑑𝑆

− 𝜏
𝜕𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅
 (. 26)

𝑢
𝜕𝜏
𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅
=

𝜕

𝜕𝑥
𝜏 𝑢

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
− 𝜏

𝜕𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅
=

𝜕

𝜕𝑥
 𝜏 𝑢 ̅̅ ̅̅ ̅̅ −

1

𝑉
∫ 𝜏 𝑢 𝑛 𝑑𝑆

− 𝜏
𝜕𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅
 (. 27)

The gravity terms can be expressed as (A.28):

𝜌 𝑢 ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝜌 𝑢 ̅̅ ̅̅ ̅̅ ̅̅ = 𝜌̅ (𝑢̃ + 𝑢̃) (. 28)

We now return our attention to the third and fourth terms on the right-hand side of (A.15):

𝑢̃ ∙ 𝑆̅̅ ̅̅
 = 𝑢̃ ∙ {

𝜕

𝜕𝑡
𝛼 < 𝜌 > 𝑢̃ +

𝜕

𝜕𝑥
𝛼 < 𝜌 > 𝑢̃ 𝑢̃ =

−
𝜕

𝜕
𝛼 < 𝜌 > ̃ −

𝜕𝑝̅

𝜕𝑥
 +

𝜕𝜏 ̅̅ ̅̅

𝜕𝑥
 + 𝛼 < 𝜌 > + 𝐿 } (. 29)

Where 𝐿 =

∫ (𝜌 𝑢 𝑤 + 𝑝𝑛 − 𝜏 𝑛)𝑑𝑆

. Similarly, we have:

𝑢̃ ∙ 𝑆̅̅ ̅̅
 = 𝑢̃ ∙ {

𝜕

𝜕𝑡
𝛼 < 𝜌 > 𝑢̃ +

𝜕

𝜕𝑥
𝛼 < 𝜌 > 𝑢̃ 𝑢̃ =

−
𝜕

𝜕
𝛼 < 𝜌 > ̃ −

𝜕𝑝̅

𝜕𝑥
 +

𝜕𝜏 ̅̅ ̅̅

𝜕𝑥
 + 𝛼 < 𝜌 > + 𝐿 } (. 30)

30

(A.29) and (A.30) may be combined using the product rule for differentiation to yield (A.31):

𝜕

𝜕𝑡
𝛼 < 𝜌 > 𝑢̃ 𝑢̃ +

𝜕

𝜕𝑥
𝛼 < 𝜌 > 𝑢̃ 𝑢̃ 𝑢̃ =

−𝑢̃

𝜕

𝜕𝑥
𝛼 < 𝜌 > ̃ − 𝑢̃

𝜕

𝜕𝑥
𝛼 < 𝜌 > ̃

−𝑢̃

𝜕𝑝̅

𝜕𝑥
 − 𝑢̃

𝜕𝑝̅

𝜕𝑥
+ 𝑢̃

𝜕𝜏 ̅̅ ̅̅

𝜕𝑥
 + 𝑢̃

𝜕𝜏 ̅̅ ̅̅

𝜕𝑥
+ 𝜌̅ (𝑢̃ + 𝑢̃) + 𝑢̃ 𝐿 + 𝑢̃ 𝐿 (. 31)

Combining (A.31) with (A.20), (A.23-28), (A.15) is re-written as (A.32):

𝑢 ∙ 𝑆 + 𝑢 ∙ 𝑆
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − (𝑢̃ ∙ 𝑆̅̅ ̅̅

 + 𝑢̃ ∙ 𝑆̅̅ ̅̅
)

𝜕

𝜕𝑡
𝛼 < 𝜌 > ̃ +

𝜕

𝜕𝑥
𝛼 < 𝜌 > (𝑢̃ ̃ + 𝑢̃ ̃ + 𝑢̃ ̃) +

𝜕

𝜕𝑥
 𝜌 𝑢

 𝑢 𝑢
 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =

𝑢̃

𝜕

𝜕𝑥
𝛼 < 𝜌 > ̃ + 𝑢̃

𝜕

𝜕𝑥
𝛼 < 𝜌 > ̃

−
𝜕

𝜕𝑥
 𝑝𝑢 ̅̅ ̅̅̅ + 𝑝

𝜕𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅
+ 𝑢̃

𝜕𝑝̅

𝜕𝑥

−
𝜕

𝜕𝑥
 𝑝𝑢 ̅̅ ̅̅̅ + 𝑝

𝜕𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅
+ 𝑢̃

𝜕𝑝̅

𝜕𝑥

+
𝜕

𝜕𝑥
 𝑢 𝜏 ̅̅ ̅̅ ̅̅ − 𝜏

𝜕𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅
− 𝑢̃

𝜕𝜏 ̅̅ ̅̅

𝜕𝑥

+
𝜕

𝜕𝑥
 𝑢 𝜏 ̅̅ ̅̅ ̅̅ − 𝜏

𝜕𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅
− 𝑢̃

𝜕𝜏 ̅̅ ̅̅

𝜕𝑥

𝑆 − 𝑢̃ 𝐿 − 𝑢̃ 𝐿 (. 32)

31

Here, 𝑆 is written as:

𝑆 =
1

𝑉
∫ [𝜌 𝑢 𝑢 𝑤 + (𝑝𝑢 𝑛 + 𝑝𝑢 𝑛) − (𝑢 𝜏 𝑛 + 𝑢 𝜏 𝑛)]

𝑑𝑆 (. 33)

(A.32) is read as the transport equation for the density normalized generalized Reynolds stress

tensor. While (A.32) is a valid form of the R-S equation, we will employ further algebra to

express (A.32) in the more familiar form given in Schwarzkopf et al. [2]. Beginning with the

triple-product term, we may write:

𝜕

𝜕𝑥
 𝜌 𝑢

 𝑢 𝑢
 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =

𝜕

𝜕𝑥
 𝛼 < 𝜌 𝑢

 𝑢
 𝑢

 > (. 34)

Using 𝑝 = 𝑝̅ + 𝑝′ and 𝑢 = 𝑢̃ + 𝑢 , the pressure terms may be decomposed viz.

𝜕

𝜕𝑥
 𝑝𝑢 ̅̅ ̅̅̅ =

𝜕

𝜕𝑥
𝑝̅𝑢̃ + 𝑝 𝑢̃ + 𝑝̅𝑢

 + 𝑝 𝑢
 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (. 35)

𝑝
𝜕𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅
= 𝑝̅

𝜕

𝜕𝑥
𝑢̃ + 𝑝

𝜕

𝜕𝑥
𝑢̃ + 𝑝̅

𝜕

𝜕𝑥
𝑢
 + 𝑝

𝜕

𝜕𝑥
𝑢

̅̅ ̅̅
 (. 36)

𝜕

𝜕𝑥
 𝑝𝑢 ̅̅ ̅̅̅ =

𝜕

𝜕𝑥
𝑝̅𝑢̃ + 𝑝 𝑢̃ + 𝑝̅𝑢 + 𝑝 𝑢 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (. 37)

𝑝
𝜕𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅
= 𝑝̅

𝜕

𝜕𝑥
𝑢̃ + 𝑝

𝜕

𝜕𝑥
𝑢̃ + 𝑝̅

𝜕

𝜕𝑥
𝑢 + 𝑝

𝜕

𝜕𝑥
𝑢

̅̅ ̅̅
 (. 38)

An analogous decomposition is employed on the deviatoric terms yielding (A.36-39):

32

𝜕

𝜕𝑥
 𝑢 𝜏 ̅̅ ̅̅ ̅̅ =

𝜕

𝜕𝑥
𝜏̃ 𝑢̃ + 𝜏

 𝑢̃ + 𝜏̃ 𝑢
 + 𝜏

 𝑢
 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (. 39)

𝜏
𝜕𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅
= 𝜏̃

𝜕

𝜕𝑥
𝑢̃ + 𝜏

𝜕

𝜕𝑥
𝑢̃ + 𝜏̃

𝜕

𝜕𝑥
𝑢
 + 𝜏

𝜕

𝜕𝑥
𝑢

̅̅ ̅
 (. 40)

𝜕

𝜕𝑥
 𝑢 𝜏 ̅̅ ̅̅ ̅̅ =

𝜕

𝜕𝑥
𝜏̃ 𝑢̃ + 𝜏

 𝑢̃ + 𝜏̃ 𝑢 + 𝜏
 𝑢 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (. 41)

𝜏
𝜕𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅
= 𝜏̃

𝜕

𝜕𝑥
𝑢̃ + 𝜏

𝜕

𝜕𝑥
𝑢̃ + 𝜏̃

𝜕

𝜕𝑥
𝑢 + 𝜏

𝜕

𝜕𝑥
𝑢

̅̅ ̅
 (. 42)

The next part of the derivation frequently employs the relationship (9) noting that combining like

terms means one but not both of the following strategies may be employed: all derivatives appear

under the average or derivatives are taken after employing the average. For this reason, it is not

yet possible to combine terms in (A.35) and (A.36) for example. In the absence of dispersed

phase effects we recall that the volume average and the derivative will commute. If (A.35) and

(A.36) are to be reducible, we must allow for the derivative and the averaging to commute, but

also include the integral effect due to the dispersed phase using an analog of (9). With this note

of caution, we begin reducing (A.35-42) paying careful attention to signs in (A.32):

(. 36) − (. 35) −(𝑢̃

𝜕𝑝̅

𝜕𝑥
+ 𝑢̃

𝜕𝑝

𝜕𝑥
+ 𝑢

𝜕𝑝̅

𝜕𝑥
+ 𝑢

𝜕𝑝

𝜕𝑥
)

̅̅ ̅̅
− (. 43)

Where =

∫ [𝑝̅𝑢̃ + 𝑝 𝑢̃ + 𝑝̅𝑢

 + 𝑝 𝑢
]𝑛

𝑑𝑆 =

∫ 𝑝𝑢 𝑛

𝑑𝑆 is the residual from

switching the order of differentiation and averaging in (A.35). (A.37) and (A.38) may be

combined in a similar fashion to yield (A.44):

(. 38) − (. 37) − (𝑢̃
𝜕𝑝̅

𝜕𝑥
+ 𝑢̃

𝜕𝑝

𝜕𝑥
+ 𝑢

𝜕𝑝̅

𝜕𝑥
+ 𝑢

𝜕𝑝

𝜕𝑥
)

̅̅ ̅̅
− (. 44)

Combing (A.43) and (A.44) with the remaining respective like-terms in (A.32), we have:

33

𝑢̃ [
𝜕𝑝

𝜕𝑥

̅̅ ̅̅
+

1

𝑉
∫ 𝑝𝑛

𝑑𝑆] − 𝑢

𝜕𝑝

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅
− (. 45)

𝑢̃ [
𝜕𝑝

𝜕𝑥

̅̅ ̅̅
+

1

𝑉
∫ 𝑝𝑛

𝑑𝑆] − 𝑢
𝜕𝑝

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅
− (. 46)

(A.45) and (A.46) may be written respectfully as (A.47) and (A.48):

−𝑢

𝜕𝑝

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅
+ 𝑢̃

1

𝑉
∫ 𝑝𝑛

𝑑𝑆 − = −𝑢

𝜕𝑝

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅
+ 𝑍 (. 47)

−𝑢
𝜕𝑝

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅
+ 𝑍 (. 48)

(A.47) and (A.48) may be written respectively as (A.49) and (A.50):

−𝑢

𝜕𝑝

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅
+ 𝑍 = 𝑝

𝜕𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅
−

𝜕𝑝̅

𝜕𝑥
𝑢

̅̅ ̅̅ ̅̅ ̅̅
−

𝜕

𝜕𝑥
𝑝 𝑢

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

+ 𝑍 (. 49)

−𝑢
𝜕𝑝

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅
+ 𝑍 = 𝑝

𝜕𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅
−

𝜕𝑝̅

𝜕𝑥
𝑢

̅̅ ̅̅ ̅̅ ̅̅
−

𝜕

𝜕𝑥
𝑝 𝑢

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
+ 𝑍 (. 50)

Defining 𝑎 = −𝑢 ′′̅̅ ̅̅ , and using the property that
 ̅

̅̅ ̅̅ ̅̅ ̅̅
=

 ̅

 ̅̅ ̅̅

8
, the final expressions for the

pressure terms can be written as (A.51):

8
 This property is not obvious and a good exercise for the interested reader. Hint: use product rule and apply

derivative-average commuting twice. The integral expressions will cancel.

34

𝑝
𝜕𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅
+ 𝑝

𝜕𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅
+ 𝑎

𝜕𝑝̅

𝜕𝑥
+ 𝑎

𝜕𝑝̅

𝜕𝑥
−

𝜕

𝜕𝑥
 𝑝 𝑢

 ̅̅ ̅̅ ̅̅ −
𝜕

𝜕𝑥
 𝑝 𝑢 ̅̅ ̅̅ ̅̅

+ 𝑍 + 𝑍 +
1

𝑉
∫ 𝑝 (𝑢

 𝑛 + 𝑢
 𝑛)

𝑑𝑆 (. 51)

The pressure terms are now in the form given in Schwarzkopf et al. [2]. We now perform

analogous algebra on the deviatoric terms as that used on the pressure terms. Combining (A.39)

with (A.40) and (A.41) with (A.42), we have:

 𝑢̃

𝜕𝜏̃

𝜕𝑥
+ 𝑢̃

𝜕𝜏

𝜕𝑥
+ 𝑢

𝜕𝜏̃

𝜕𝑥
+ 𝑢

𝜕𝜏

𝜕𝑥

̅̅ ̅̅
+

1

𝑉
∫ 𝑢 𝜏 𝑛

𝑑𝑆 (. 52)

 𝑢̃
𝜕𝜏̃
𝜕𝑥

+ 𝑢̃
𝜕𝜏

𝜕𝑥
+ 𝑢

𝜕𝜏̃
𝜕𝑥

+ 𝑢
𝜕𝜏

𝜕𝑥

̅̅ ̅̅
+

1

𝑉
∫ 𝑢 𝜏 𝑛

𝑑𝑆 (. 53)

(A.52) and (A.53) may be combined with their respective remaining counterparts in (A.32) to

yield:

 𝑢

𝜕𝜏

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅
+

1

𝑉
∫ 𝑢

 𝜏 𝑛

𝑑𝑆 (. 54)

 𝑢
𝜕𝜏
𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅
+

1

𝑉
∫ 𝑢

 𝜏 𝑛

𝑑𝑆 (. 55)

More algebra yields the deviatoric terms expressed in the form given in [2]:

35

𝜕

𝜕𝑥
 𝑢

 𝜏
 ̅̅ ̅̅ ̅̅ ̅ − 𝑎

𝜕𝜏̃

𝜕𝑥
− 𝜏

𝜕𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅
+

1

𝑉
∫ 𝑢

 𝜏̃ 𝑛

𝑑𝑆 (. 56)

𝜕

𝜕𝑥
 𝑢 𝜏

 ̅̅ ̅̅ ̅̅ ̅ − 𝑎
𝜕𝜏̃
𝜕𝑥

− 𝜏

𝜕𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅
+

1

𝑉
∫ 𝑢

 𝜏̃ 𝑛

𝑑𝑆 (. 57)

Combining new integral terms with those in (A.32), the Reynolds stress equation expressed in a

form analogous to its presentation in [2] may now be written:

𝜕

𝜕𝑡
𝛼 < 𝜌 > ̃ +

𝜕

𝜕𝑥
𝛼 < 𝜌 > 𝑢̃ ̃ +

𝜕

𝜕𝑥
 𝛼 < 𝜌 𝑢

 𝑢
 𝑢

 >=

−𝛼 < 𝜌 > ̃

𝜕𝑢̃

𝜕𝑥
− 𝛼 < 𝜌 > ̃

𝜕𝑢̃

𝜕𝑥

−
𝜕

𝜕𝑥
𝛼 < 𝑝 𝑢

 > + 𝛼 < 𝑝
𝜕𝑢

𝜕𝑥
> + 𝑎

𝜕𝑝̅

𝜕𝑥

−
𝜕

𝜕𝑥
 𝛼 < 𝑝 𝑢

 > + 𝛼 < 𝑝
𝜕𝑢

𝜕𝑥
> + 𝑎

𝜕𝑝̅

𝜕𝑥

+
𝜕

𝜕𝑥
 𝛼 < 𝑢

 𝜏
 > −𝛼 < 𝜏

𝜕𝑢

𝜕𝑥
> −𝑎

𝜕𝜏̃

𝜕𝑥

+
𝜕

𝜕𝑥
 𝛼 < 𝑢

 𝜏
 > −𝛼 < 𝜏

𝜕𝑢

𝜕𝑥
> −𝑎

𝜕𝜏̃
𝜕𝑥

+ + − (. 58)

Where the additional source terms , , , are dispersed phase effects owing to mass-

transfer, pressure, and viscous contributions, respectfully, and in the most reduced form are

expressed:

36

 =
1

𝑉
∫ [𝜌 𝑤(𝑢

 𝑢
 − 𝑢̃ 𝑢̃)]

𝑑𝑆 (. 59)

 =
1

𝑉
∫ (𝑝′𝑢

 𝑛 + 𝑝′𝑢
 𝑛)

𝑑𝑆 (. 60)

 =
1

𝑉
∫ (𝑢

 𝜏
 + 𝑢

 𝜏
)𝑛

𝑑𝑆 (. 61)

37

Derivation of Turbulent Mass Flux Equation

The turbulent mass flux equation is derived by first developing the transport equation for the

mass-averaged fluctuating velocity 𝑢 and then applying volume averaging to the resulting

equation. The 𝑢 equation is obtained by subtracting the volume-averaged Navier-Stokes

equation (A.14) from the instantaneous Navier-Stokes equation (A.6) viz.

[
𝜕

𝜕𝑡
𝜌 𝑢 +

𝜕

𝜕𝑥
𝜌 𝑢 𝑢 =

𝜕

𝜕𝑥
𝜎 + 𝜌] −

[
𝜕

𝜕𝑡
𝜌 ̅̅̅𝑢̃ +

𝜕

𝜕𝑥
𝜌 ̅̅̅𝑢̃ 𝑢̃ = −

𝜕

𝜕𝑥
𝜌 ̅̅̅ ̃ +

𝜕𝜎 ̅̅̅̅

𝜕𝑥
 + 𝜌 ̅̅̅ + 𝐶] (. 62)

Where 𝐶 is the integral expression defined in (A.14). Using the procedure discussed in Besnard

et al. [1], we use continuity and group like-terms to obtain the 𝑢′′ equation:

𝜌 ̅̅̅
𝜕𝑢

𝜕𝑡
+ 𝜌 ̅̅̅𝑢̃

𝜕𝑢

𝜕𝑥
+ 𝜌 ̅̅̅𝑢

𝜕𝑢

𝜕𝑥
=

𝜕

𝜕𝑥
𝜌 ̅̅̅ ̃ +

𝜌 ̅̅̅

𝜌

𝜕𝜎

𝜕𝑥
−

𝜕𝜎 ̅̅̅̅

𝜕𝑥
 + (𝑢̃ ∙ 𝜒 − 𝐶) (. 63)

Here, 𝜒 is the continuity source term defined in (A.5). Applying volume averaging to (A.63)

term-by-term, we have:

𝜌 ̅̅̅
𝜕𝑢

𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅
= 𝜌 ̅̅̅ [

𝜕𝑢
 ̅̅̅̅

𝜕𝑡
+

1

𝑉
∫ 𝑢

 (v 𝑛 + 𝑟̇)𝑑𝑆

] (. 64)

𝜌 ̅̅̅𝑢̃
𝜕𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
= 𝜌 ̅̅̅𝑢̃ [

𝜕𝑢
 ̅̅̅̅

𝜕𝑥
−

1

𝑉
∫ 𝑢

 𝑛 𝑑𝑆

] (. 65)

𝜌 ̅̅̅𝑢
𝜕𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
= 𝜌 ̅̅̅ (𝑢

𝜕𝑢̅

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅
+ 𝑢

𝜕𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅
) = 𝜌 ̅̅̅ (𝑢 ̅̅̅̅

𝜕𝑢̅

𝜕𝑥
+ 𝑢

𝜕𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅
) (. 66)

Using identity (10) in [1], the last term in (A.66) may be decomposed in terms of the Reynolds

stress and the turbulent mass flux so that the whole of (A.66) becomes:

38

𝜌 ̅̅̅𝑢
𝜕𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 =

 𝜌 ̅̅̅ ∙ (𝑢 ̅̅̅̅
𝜕𝑢̅

𝜕𝑥
+

𝜕

𝜕𝑥
(𝑎 𝑎 + ̃ − 𝜌 𝑢

 𝑢 ̅̅ ̅̅ ̅̅ ̅̅ 𝜌 ̅̅̅) −
1

𝑉
∫ 𝑢

 𝑢
 𝑛 𝑑𝑆

− 𝑢

𝜕𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅
) (. 67)

Returning to (A.63), the average of the stress terms may be expressed as (A.68):

𝜌 ̅̅̅

𝜌

𝜕𝜎

𝜕𝑥
−

𝜕𝜎 ̅̅̅̅

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
= (

𝜌 ̅̅̅

𝜌
− 1)

𝜕𝜎 ̅̅̅̅

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
+

𝜌 ̅̅̅

𝜌

𝜕𝜎

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅
=

𝜕𝜎 ̅̅̅̅

𝜕𝑥
+ 𝜌 ̅̅̅ {(

1

𝜌
)

̅̅ ̅̅ ̅̅ 𝜕𝜎

𝜕𝑥

̅̅ ̅̅ ̅
+ (

1

𝜌
)
 𝜕𝜎

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
} =

𝜕𝜎 ̅̅̅̅

𝜕𝑥
+ 𝜌 ̅̅̅ (

1

𝜌
)
 𝜕𝜎

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
− (+ 1)

1

𝑉
∫ 𝜎

 𝑛 𝑑𝑆

 (. 68)

The remaining terms can be expressed as (A.69)
9
 and (A.70)

10
:

𝜕

𝜕𝑥
𝜌 ̅̅̅ ̃

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
=

𝜕

𝜕𝑥
𝜌 ̅̅̅ ̃ (. 69)

And,

(𝑢̃ ∙ 𝜒 − 𝐶)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑛 𝑡 𝑟 𝑑𝑢 (. 70)

Collecting terms in (A.64)-(A.70), we have (A.71):

𝜌 ̅̅̅
𝜕𝑢

 ̅̅̅̅

𝜕𝑡
+ 𝜌 ̅̅̅𝑢̃

𝜕𝑢
 ̅̅̅̅

𝜕𝑥
+ 𝜌 ̅̅̅𝑢 ̅̅̅̅

𝜕𝑢̅

𝜕𝑥
+ 𝜌 ̅̅̅

𝜕

𝜕𝑥
(𝑎 𝑎 + ̃ −

𝜌 𝑢
 𝑢 ̅̅ ̅̅ ̅̅ ̅̅

𝜌 ̅̅̅
) − 𝜌 ̅̅̅𝑢

𝜕𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅
=

𝜕𝜎 ̅̅̅̅

𝜕𝑥
+ 𝜌 ̅̅̅ (

1

𝜌
)
 𝜕𝜎

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
+

𝜕

𝜕𝑥
𝜌 ̅̅̅ ̃ + (. 71)

9
 The integral term in (A.69) is zero because the mean terms in the integrand will be constant along the path. In other

words, mean properties are invariant everywhere within the control volume so they are also invariant along particle

surfaces within the volume.
10

 Proving (A.70) to be zero or non-zero is an open problem.

39

Where is the sum of the integral contributions due to the dispersed phase (A.72):

 = (𝑢̃ ∙ 𝜒 − 𝐶)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝜌 ̅̅̅𝑢̃
1

𝑉
∫ 𝑢

 𝑛 𝑑𝑆

− 𝜌 ̅̅̅
1

𝑉
∫ 𝑢

 (v 𝑛 + 𝑟̇)𝑑𝑆

+𝜌 ̅̅̅
1

𝑉
∫ 𝑢

 𝑢
 𝑛 𝑑𝑆

− (+ 1)
1

𝑉
∫ 𝜎

 𝑛 𝑑𝑆

 (. 72)

Observe that may be re-written in a simpler form:

 = (𝑢̃ ∙ 𝜒 − 𝐶)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝜌 ̅̅̅
1

𝑉
∫ 𝑢

 𝑤𝑛 𝑛 𝑑𝑆

− (+ 1)
1

𝑉
∫ 𝜎

 𝑛 𝑑𝑆

 (. 73)

Defining the turbulent mass flux 𝑎 = −𝑢
 ̅̅̅̅ and using continuity, (A.71) is cast into a form

similar to that which is presented in [2] (A.74):

𝜕𝜌 ̅̅̅𝑎

𝜕𝑡
+

𝜕𝜌 ̅̅̅𝑢̃ 𝑎

𝜕𝑥

= −
𝜕𝜎 ̅̅̅̅

𝜕𝑥
− ̃

𝜕𝜌 ̅̅̅

𝜕𝑥
+ 𝜌 ̅̅̅

𝜕

𝜕𝑥
𝑎 𝑎 − 𝜌 ̅̅̅𝑎

𝜕𝑢̅

𝜕𝑥
− 𝜌 ̅̅̅

𝜕

𝜕𝑥
(
𝜌 𝑢

 𝑢 ̅̅ ̅̅ ̅̅ ̅̅

𝜌 ̅̅̅
) − 𝜌 ̅̅̅ (

1

𝜌
)
 𝜕𝜎

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

−𝜌 ̅̅̅𝑢

𝜕𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅
− + 𝑎 𝜒 (. 74)

Note the final non-integral term on the right-hand side of (A.74) is a dilatation term that was

neglected in the original BHR derivation [1]. This term would still exist for a single-phase

compressible flow, but its magnitude may be small depending on the application.

40

Derivation of Density-Specific Volume Covariance Equation

We derive the density-specific volume covariance equation. Beginning with the instantaneous

continuity equation (A.1), we re-write 𝜌 = 1 , yielding the conservation of mass relationship

in specific-volume form (A.75):

𝜕

𝜕𝑡
+ 𝑢

𝜕

𝜕𝑥
=

𝜕𝑢

𝜕𝑥
 (. 75)

where is the instantaneous specific volume. Multiplying (A.75) by instantaneous density and

re-writing in conservative form, we have (A.76):

𝜕𝜌

𝜕𝑡
+

𝜕𝜌 𝑢

𝜕𝑥
= 𝜌

𝜕𝑢

𝜕𝑥
 (. 76)

It is worth noting that 𝜌 = 1 by definition. For the moment, we will not apply the

instantaneous density-specific volume identity and (A.76) will be combined with a later equation

to yield the density-specific volume covariance equation. This strategy will simplify the resulting

algebra in the derivation. An alternate strategy to arrive at the b-equation was proposed in [1].

We will show the two approaches yield the same result in the limit dispersed phase effects

vanish. Continuing the derivation, we multiply (A.75) by the volume-averaged density 𝜌 ̅̅̅, re-

writing the result in conservative form we have (A.77):

𝜕𝜌 ̅̅̅

𝜕𝑡
+

𝜕𝜌 ̅̅̅ 𝑢

𝜕𝑥
− 𝜒 −

𝜕𝜌 ̅̅̅𝑢

𝜕𝑥
= 𝜌 ̅̅̅

𝜕𝑢

𝜕𝑥
 (. 77)

Where the third and fourth term on the left-hand side of (A.77) come from the filtered continuity

equation (A.5) and the Favre velocity decomposition. The b-equation can now be obtained by

volume averaging term-by-term in (A.76) and (A.77) respectively, and then taking the difference

of the resulting averaged equations. Beginning with (A.76), the filtered terms are (A.78-80):

41

𝜕𝜌

𝜕𝑡

̅̅ ̅̅ ̅̅
=

𝜕

𝜕𝑡
 (𝜌 ̅̅̅ ̅ + 𝜌 ̅̅ ̅̅ ̅) +

1

𝑉
∫ 𝜌 (v 𝑛 + 𝑟̇)𝑑𝑆

 (. 78)

𝜕𝜌 𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅
=

𝜕

𝜕𝑥
 (𝜌 ̅̅̅ ̅𝑢̅ + 𝑢̅ 𝜌 ̅̅ ̅̅ ̅ + 𝜌 ̅̅̅ 𝑢 ′̅̅ ̅̅ ̅̅ + ̅𝜌 𝑢 ′̅̅ ̅̅ ̅̅ + 𝜌 𝑢 ′̅̅ ̅̅ ̅̅ ̅̅ ̅) −

1

𝑉
∫ 𝜌 𝑢 𝑛 𝑑𝑆

 (. 79)

 𝜌
𝜕𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
= 𝜌 ̅̅̅ ̅

𝜕𝑢̅

𝜕𝑥
+ 𝜌 ̅̅̅

𝜕𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅
+ ̅𝜌

𝜕𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅
+ 𝜌

𝜕𝑢̅

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
+ 𝜌

𝜕𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
−

1

𝑉
∫ 𝜌 ̅̅̅ ̅𝑢 𝑛 𝑑𝑆

 (. 80)

We now apply volume-averaging term-by-term to (A.77) yielding (A.81-85)
11

:

𝜕𝜌 ̅̅̅

𝜕𝑡

̅̅ ̅̅ ̅̅
=

𝜕

𝜕𝑡
 𝜌 ̅̅̅ ̅ +

1

𝑉
∫ 𝜌 ̅̅̅ (v 𝑛 + 𝑟̇)𝑑𝑆

 (. 81)

𝜕𝜌 ̅̅̅ 𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅
=

𝜕

𝜕𝑥
 (𝜌 ̅̅̅ ̅𝑢̅ + 𝜌 ̅̅̅ 𝑢 ′̅̅ ̅̅ ̅̅) −

1

𝑉
∫ 𝜌 ̅̅̅ 𝑢 𝑛 𝑑𝑆

 (. 82)

− 𝜒̅̅ ̅ = 𝑛 𝑡 𝑟 𝑑𝑢 (. 83)

−
𝜕𝜌 ̅̅̅𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
= ̅

𝜕

𝜕𝑥
𝜌 ̅̅̅𝑎 −

𝜕

𝜕𝑥
𝜌 ̅̅̅𝑢

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

+ 𝜌 ̅̅̅ ̅
1

𝑉
∫ 𝑢

 𝑛 𝑑𝑆

 (. 84)

𝜌 ̅̅̅
𝜕𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
= 𝜌 ̅̅̅ ̅

𝜕𝑢̅

𝜕𝑥
+ 𝜌 ̅̅̅

𝜕𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅
−

1

𝑉
∫ 𝜌 ̅̅̅ ̅𝑢 𝑛 𝑑𝑆

 (. 85)

Subtracting (A.78-80) from (A.81-85), and defining the density-specific volume correlation

 = 𝜌̅ ̅ − 1 = −𝜌 ′̅̅ ̅̅ ̅, we have:

𝜕

𝜕𝑡
+

𝜕𝑢̅

𝜕𝑥
−

𝜕

𝜕𝑥
(̅𝜌 𝑢 ′̅̅ ̅̅ ̅̅ + 𝜌 𝑢 ′̅̅ ̅̅ ̅̅ ̅̅ ̅) + ̅

𝜕

𝜕𝑥
𝜌 ̅̅̅𝑎 −

𝜕

𝜕𝑥
𝜌 ̅̅̅𝑢

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

+ ̅𝜌
𝜕𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅
+ 𝜌

𝜕𝑢̅

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅̅

+ 𝜌
𝜕𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
= 𝑄 (. 86)

11

 Proving (A.83) zero or non-zero is an open problem.

42

Where,

𝑄 =
1

𝑉
∫ 𝜌

 (v 𝑛 + 𝑟̇)𝑑𝑆

−
1

𝑉
∫ 𝜌

 𝑢 𝑛 𝑑𝑆

+ 𝜒̅̅ ̅ − 𝜌 ̅̅̅ ̅
1

𝑉
∫ 𝑢

 𝑛 𝑑𝑆

 (. 87)

Some algebra is needed to write (A.86) in the form expressed in [2]. We may note (A.88) and

(A.89):

𝜕𝑢̅

𝜕𝑥
+ 𝜌

𝜕𝑢̅

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
=

𝜕𝑢̅

𝜕𝑥
+ 𝜌 ̅̅ ̅̅ ̅

𝜕𝑢̅

𝜕𝑥
=

𝜕𝑢̅

𝜕𝑥
−

𝜕𝑢̅

𝜕𝑥
= 𝑢̅

𝜕

𝜕𝑥
 (. 88)

 ̅
𝜕

𝜕𝑥
𝜌 ̅̅̅𝑎 = (

 + 1

𝜌̅
)

𝜕

𝜕𝑥
𝜌 ̅̅̅𝑎 (. 89)

(A.86) becomes (A.90):

𝜕

𝜕𝑡
+ 𝑢̅

𝜕

𝜕𝑥
+ (

 + 1

𝜌̅
)

𝜕

𝜕𝑥
𝜌 ̅̅̅𝑎 − 𝑄 =

𝜕

𝜕𝑥
(̅𝜌 𝑢 ′̅̅ ̅̅ ̅̅ + 𝜌 𝑢 ′̅̅ ̅̅ ̅̅ ̅̅ ̅) +

𝜕

𝜕𝑥
𝜌 ̅̅̅𝑢

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

− ̅𝜌
𝜕𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅
− 𝜌

𝜕𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 (. 90)

The right-hand side of (A.90) requires more work. After considerable algebra, (A.90) may be

expressed in the form presented in (A.91) [2]:

𝜕

𝜕𝑡
+ 𝑢̅

𝜕

𝜕𝑥
+ (

 + 1

𝜌̅
)

𝜕

𝜕𝑥
𝜌 ̅̅̅𝑎 + 𝜌 ̅̅̅

𝜕

𝜕𝑥
 𝑢 ′̅̅ ̅̅ ̅̅ − 2𝜌 ̅̅̅

𝜕𝑢

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅
= (. 91)

Where is the net source of owing to dispersed phase effects and is written:

43

 = 𝑄 −
1

𝑉
∫ 𝑢

 𝑛 𝑑𝑆

 =
1

𝑉
∫ 𝜌

 (v 𝑛 + 𝑟̇)𝑑𝑆

−
1

𝑉
∫ 𝜌

 𝑢 𝑛 𝑑𝑆

+ 𝜒̅̅ ̅ − 𝜌 ̅̅̅ ̅
1

𝑉
∫ 𝑢

 𝑛 𝑑𝑆

−
1

𝑉
∫ 𝑢

 𝑛 𝑑𝑆

 = −
1

𝑉
∫ 𝜌

 𝑤𝑛 𝑛 𝑑𝑆

+ 𝜒̅̅ ̅ − 𝜌 ̅̅̅ ̅
1

𝑉
∫ 𝑢

 𝑛 𝑑𝑆

−
1

𝑉
∫ 𝑢

 𝑛 𝑑𝑆

 = −
1

𝑉
∫ 𝜌

 𝑤𝑛 𝑛 𝑑𝑆

+ 𝜒̅̅ ̅ − (+ 1)
1

𝑉
∫ (𝑢

 − 𝑎)𝑛 𝑑𝑆

−
1

𝑉
∫ 𝑢

 𝑛 𝑑𝑆

 = −
1

𝑉
∫ 𝜌

 𝑤𝑛 𝑛 𝑑𝑆

+ 𝜒̅̅ ̅ − (2 + 1)
1

𝑉
∫ 𝑢

 𝑛 𝑑𝑆

 (. 92)

LA-UR-13-26502
Approved for public release; distribution is unlimited.

Title: Modeling Kelvin-Helmholtz and Rayleigh-Taylor driven Mixing Layers
using the BHR model

Author(s): Tan-Torres, Sasha A.

Intended for: Computational Physics Summer Workshop, 2013-06-10/2013-08-16 (Los
Alamos, New Mexico, United States)
Report

Issued: 2013-08-16

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National
Security, LLC for the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.
By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to
publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.
Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the
U.S. Departmentof Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish;
as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Modeling Kelvin-Helmholtz and Rayleigh-Taylor driven Mixing

Layers using the BHR model

Sasha Tan-Torres

August 15, 2013

Abstract

Turbulence models are often applied to problems that are that are self-similar. Calibrating and
validating turbulence models outside of the self-similar regime of a mixing layer is important to consider,
since models can sometimes offer a local fit, i.e. only the self-similar regime, rather than a global fit,
inclusive of the transient regime. Combined buoyancy and shear driven mixing layers (due to Rayleigh-
Taylor and Kelvin-Helmholtz instabilities respectively) are difficult to validate due to their inherent
transient behavior, as well as their sensitivity to initial conditions. Using the BHR-3 model, we can
attempt to model the behavior of the combined mixing layer and then compare the results to experimental
data provided by a group at Texas A & M University.

1 Introduction

Coupled buoyancy and shear driven mixing occurs in multiple environments, both natural and manufactured.
Some examples include oceans and rivers, mixing chambers, and inertial confinement fusion (ICF). When
fluids of different species or density overlay one another, the interface is unstable and causes the two fluids
to mix, which drives Rayleigh-Taylor instability. The buoyancy creates a normal force at the interface. In
contrast, parallel streams of unequal velocity fluids create a tangential shear at the interface. This is known
as Kelvin-Helmholtz instability. [1] When studying turbulent models, it is better to start with simple flows
with easily targeted physics. Problems showing self-similar behavior at late time make for easy comparison
to experimental data, regardless of the initial conditions. Unfortunately, this can often lead to models which
represent the local behavior of the flow (generally in the self-similar region), but sacrifice global accuracy, such
as the transient portion of the flow. The general mixing layer growth driven by both shear and buoyancy
is a transient process. Though a model can be calibrated for shear or buoyancy separately, validation is
difficult for when they are combined, since the transient effect of initial conditions and flow physics are hard
to disentangle. The flow is very sensitive to initial conditions which makes calibration in the transient regime
a challenge. The BHR-3 model is used to compare against experimental data and the results are discussed
in this paper.

2 BHR-3 Model

BHR-3 is a model for shear and buoyancy driven mixing. It is a set of equations developed at Los Alamos
National Laboratory. It is derived from the Navier Stokes equations and models variable density flow. [4]
The equations are shown in (1–4), where ρ is density, R̃ij is Reynolds stress, ũ is velocity, P is pressure, ai
is turbulent mass flux, S is the turbulent length scale, Cr1−4, Ca1, Ca, Cb, Cb1, Cs, and C1−4 are turbulent
coefficients, and K is the turbulent kinetic energy.

1

Figure 1: Buoyancy and Shear Mixing layer (taken from [3])

∂
(
ρ̄R̃ij

)
∂t

+
∂

∂xk

(
ρ̄ǔkR̃ij

)
= (1− Cr1)

[
ai
∂P̄

∂xj
+ aj

∂P̄

∂xi

]
+ ρ̄(Cr2 − 1)

[
R̃ik

∂ũj
∂xk

+ R̃jk
∂ũi
∂xk

]
+ Cr3

∂

∂xk

(
S√
K
ρ̄R̃km

∂R̃ij

∂xm

)
− Cr4ρ̄

√
K

S

(
R̃ij −

1

3
R̃kkδij

)
− Cr2

2

3
ρ̄R̃mk

∂ũm
∂xk

δij + Cr1
2

3
ak
∂P̄

∂xk
δij − ρ̄

2

3

K
√
K

S
δij

, (1)

∂ (ρ̄ai)

∂t
+

∂

∂xk
(ρ̄ũkai) = b

∂P̄

∂xi
− R̃ik

∂ρ̄

∂xk
− ρ̄ak

∂ (ũi − ai)
∂xk

+ ρ̄
∂

∂xk
(akai)

+ Caρ̄
∂

∂xm

(
S√
K
Rmn

∂ai
∂xn

)
− Ca1ρ̄

√
K

S
ai

(2)

∂(ρ̄b)

∂t
+
∂(ρ̄bũk
∂xk

= 2ρ̄ak
∂b

∂xk
− 2(b+ 1)ak

∂ρ̄

∂xk
+ Cbρ̄

2 ∂

∂xm

(
S

ρ̄
√
K
Rmn

∂b

∂xn

)
− Cb2ρ̄

√
K

S
b (3)

∂ρ̄S

∂t
+

∂

∂xj
(ρ̄ũjS) =

S

K

(
3

2
− C4

)
aj
∂P̄

∂xj
− S

K

(
3

2
− C1

)
ρ̄R̃ij

∂ũi
∂xj
−
(

3

2
− C2

)
ρ̄
√
K

− C3ρ̄S
∂ūj
∂xJ

+ Cs
∂

∂xm

(
S√
K
ρ̄R̃mn

∂S

∂xn

) (4)

2.1 Geometry

For this problem, we examine two parallel flowing fluid streams separated by a thin splitter plate. We examine
multiple cases to compare to our model. These include shear only, buoyancy only, and shear and buoyancy
combined with varying initial conditions. The mixing layer consists of two fluids with a combination of
different velocities, thermodynamics states, or physical properties. The schematic of the buoyancy and shear
mixing layer can be seen in Fig. 1, in which U is velocity, T is temperature, h is half the mixing width, and
u is the average velocity . A picture of the actual experimental cases from Texas A&M University are shown
in Fig. 2, where (a) Pure Rayleigh Taylor, (b) Pure Kelvin-Helmholtz, and (c) Combined Rayleigh-Taylor
and Kelvin-Helmholtz instabilities are shown. [1]

2

Figure 2: Experimental Cases (taken from [1])

2.2 Kelvin-Helmholtz and Rayleigh Taylor Instabilities

Rayleigh-Taylor Instability (RT) occurs when the interface between two fluids of different densities are
accelerated such that 5p • 5ρ < 0, where ρ is density and p is pressure. An important characteristic of RT
is the Atwood number, At, which is a non-dimensional measure of the density difference between two fluids.
Equation 5 shows the Atwood number equation where ρ1 is the heavier fluid density and ρ2 is the lighter
fluid density.[1]

At =
ρ1 − ρ2
ρ1 + ρ2

(5)

Classically, small perturbations at the interface grow in size with time and begin interacting. In contrast
to RTI, Kelvin-Helmholtz instability (KH) occurs when two fluids of different velocities interact at the
interface. Like RT, this leads to turbulence. In time, the small perturbations at the interface grow and form
into vortices. The relative strength of buoyancy to shear flow can be quantified by the Richardson number
(Ri), which is shown in Equation 6, where g is gravity, h is mixing width, and ∆U is velocity difference. [1]

Ri =
−4ghAt

(∆U)2
(6)

For this problem, several cases are run: RT(pure Rayleigh-Taylor) and KHRT1 and KHRT2 (Kelvin-
Helmholtz and Rayleigh-Taylor combined).

3 Experimental Data and Setup

An experimental group at Texas A & M University provided data for comparison to the BHR-3 model. The
BHR-3 model was initialized using using the initial conditions of the experimental data. A wind tunnel
type facility was built at the university for this problem. The facility consists of two flow sections separated
by a splitter plate. Each section is fashioned with flow straighteners and wire mesh screens to aid uniform

3

Figure 3: Experimental Setup (taken from [1])

Table 1: Stations
Case Stations
RT 10, 40, 65, 100, 125, 160

KHRT1 10, 40 , 50, 65, 75, 100, 125, 150, 175
KHRT2 10, 50, 65, 75, 85, 100, 125, 150, 175

flow and reduce initial turbulence. Air is supplied to the top section, while an air and helium mixture are
supplied to the bottom section. This creates an At of 0.035. The test section following the splitter plate is
2 meters long. Sensors are placed at certain positions along the test chamber for each case. The cases and
stations are listed in Table 1. A schematic of the actual experimental set up is shown in Fig. 3

Using imaging and simultaneous hot wire and cold wire anemometry, measurements are made for mix
widths, point-wise velocities, and densities. The specific experimental cases are shown in Table 2. The initial
conditions taken from the data include Rxy, Ryy, k, ax, ay, b, and ε.

4 Analysis

It can be seen when comparing the BHR-3 model with the experimental data that the model is very sensitive
to initial conditions. Initially, a parameter study comparing initial turbulent kinetic energy was conducted
in order to see how the model behaves. Figures 4 and 5 show a comparison of normalized turbulent kinetic
energy and Richardson number with varying initial turbulent kinetic energy. In early Richardson number,
the flow converges to a specific trajectory. Prior to that, the response to the initial conditions can be seen.

A graph of the comparison of different initial condition profiles can be seen in Fig. 6, which shows now
non-dimensional mixing width changes with non-dimensional distance. Data from [3] is compared to different
models for initial conditions. “Parabolic” has peak values of K and ε, with a parabolic shape. “Peak” is

4

Table 2: Experimental Cases
Case Bottom

Stream
Velocity,
m/s (U2)

Top Stream
Velocity,
m/s (U1)

Uaverage,
m/s

At Maximum
Ri number

RT 0.63 0.63 0.63 0.035
KHRT1 0.63 0.86 0.75 0.035 -6.9
KHRT2 0.63 1.03 0.83 0.035 -1.8

Figure 4: Parameter study KHRT1: varying initial turbulent kinetic energy

5

Figure 5: Parameter study KHRT2: varying initial turbulent kinetic energy

a uniform profile which uses the peak values of the “parabolic” IC. “Freestream” is a uniform profile with
the freestream values of K and ε. “5%” assumes that the turbulent kinetic energy is five percent of U2

avg,
and ε is based on tunnel mesh length scale. It can be seen that “peak” and “parabolic” seem to fit the
data the best, however, a slight change in the initial conditions can dramatically change how model behaves
and fits the data. The initial conditions used for the BHR-3 model was a linear profile for velocity and
density. A parabolic profile was chosen for all turbulent quantities because the experimental data shows
an approximately parabolic fit.The initial mixing width was set based on experimental width data and the
amplitude was based on experimental center line data. ε is scaled based on K and length scale, S, as seen in
Equation 7. In [4], the coefficients were tuned to match DNS data. Initial S was tuned to match experimental
data. For this project, that tuning was not done. Instead, when the initial conditions were set, there was no
value for S, and so S was set to the layer thickness. This setting is most likely leads to inaccuracy, and an
improved method for finding S is necessary.

ε =
K

3
2

S
(7)

Since the data and the model report different α, which is the dimensionless growth rate of the mixing
layer in the self-similar regime, a direct comparison is difficult, hence the scaling issue. After coding the
BHR-3 model equations, we could compare the experimental data of turbulent kinetic energy and mixing
width height to the model. What can be seen from figures 7 and 8 is that we have not yet achieved a good
enough agreement between the model and the data.

5 Conclusions and Future Work

Thus far, we have not achieved a good enough agreement between the experimental data from Texas A&M
and the BHR-3 model. Possible explanations for this lack of agreement is that the scaling for ε is incorrect.
This can be due to the lack of measured data for ε. There could also have been errors in post-processing the
data. The BHR-3 model could need further calibration in the transient regime. Also, the initial condition

6

Figure 6: Comparison of Initial Conditions: Non-dimensional Distance vs. Mixing width height

Figure 7: Turbulent Kinetic Energy

7

Figure 8: Mixing Width

profiles are based on center line data only. What can be concluded is that the model is much more sensitive
to initial condition changes than was originally expected. Since more calibration is done in a self-similar
regime, calibration for a transient problem is very difficult. The goals for the future work include resolving
the lack of agreement, as well as obtaining complete profiles for experimental initial conditions. Additionally,
an error analysis would be run after better agreement is achieved.

References

[1] Bhanesh Akula, Malcolm J. Andrews, Devesh Ranjan, Effect of shear on Rayleigh-Taylor mixing at small
Atwood number. American Physical Society, PHYSICAL REVIEW E 87, 033013, 2013.

[2] Didier Besnard, Francis H. Harlow, Rick M. Rauenzahn, Charles Zemach, Turbulence Transport Equa-
tions for Variable-Density Turbulence and Their Relationship to Two-Field Models. Los Alamos National
Laboratory, U.S Government Printing Office.

[3] D.M Snider and M. J. Andrews, The simulation of mixing layers driven by compound buoyancy and
shear. ASME, Vol. 118, June 1996.

[4] John D. Schwarzkopf, Daniel Livescu, Robert A. Gore, Rick M. Rauenzahn, and J. Raymond Ristorcelli,
Application of a second-moment closure model to mixing processes involving multicomponent miscible
fluids. Los Alamos National Laboratory, Taylor & Francis, 2011.

8

	Background
	Philosophy of the Workshop
	Funding and Participation Profile
	LANL Staff
	Students

	Lectures
	Survey Results

	Student Reports
	Esmond_Thurber.pdf
	Introduction
	Code Details
	Source Code Files
	Input

	CCH Description
	Cartesian Coordinates
	Cylindrical Coordinates
	Spherical Coordinates
	Boundary Conditions
	CCH: Fixed (Reflective) Boundary Condition
	CCH: Free Boundary Condition

	SGH Description
	Curvilinear Coordinates
	Boundary Conditions
	SGH: Fixed (Reflective) Boundary Condition
	SGH: Free Boundary Condition

	PCH Description
	Curvilinear Coordinates
	Boundary Conditions
	PCH: Fixed BC
	PCH: Free BC

	Solver Details
	Riemann Solution
	Time Integration
	Time Step Control

	PCH Method Comparison
	Smoothing
	Space and Time Averaged
	PCH Comparison to PCHA
	MPC Comparison to CCH

	Convergence Analysis
	Test Problems
	Sod Problem
	Piston Problem
	Noh
	Planar Coordinates
	Cylindrical Coordinates
	Spherical Coordinates

	Sedov
	Planar Coordinates

	Conclusions
	Future Work
	Curvilinear Coordinates
	Second Order Scheme

	References
	Appendix

	Jibben_Tumblin.pdf
	Introduction
	Motivation
	Governing Equations
	The Level Set Method

	The Discontinuous Galerkin Method
	GPU Programming Model
	Tricks and Workarounds
	Results
	Concluding Remarks

	Josey_Veit.pdf
	Introduction
	Theory
	Fission Matrices
	Eigenvalue Solvers

	Methodology
	Reactor Model Modification
	Fission Matrix Generation
	Eigenvalue Tool Exploration
	Python
	C++
	MATLAB
	Fortran ARPACK Interface

	Verification

	Results
	Solver Timings
	Eigenmodes
	Transition Coefficients
	Transitions
	Reconstruction Error
	Statistics

	Future Work
	Conclusion
	Acknowledgements
	Biorthogonality Relation

	Perkins_Souza.pdf
	Introduction
	The Structure Function
	Elastic Feature
	Free-electron Feature
	Beyond the RPA
	Bound-free Feature

	Results
	Theoretical Spectra and Convolution
	Comparison to Literature
	Free-electron Feature
	Bound-free Feature

	Parameter Dependence
	Angles
	Temperatures

	Conclusion
	Free-electron Feature Details
	RPA Mathematics
	RPA Computation
	RPA Removable Discontinuity
	Beyond RPA Mathematics
	Beyond RPA Computation

	Computation of the Bound-free Structure Function
	Parameter Dependence Case Details

	Willmert_Talley.pdf
	Introduction
	Mass models
	Liquid drop model
	Shell model
	Deformation
	Strutinsky method
	Macroscopic-microscopic model

	Saddles in multiple dimensions
	Immersion method

	Metropolis random walk
	Implementation
	Updating the code base
	Parallelization with OpenMP

	Algorithmic updates
	Original *Moller2009 implementation
	Simultaneous flooding
	Saddle convergence
	Bounded-box flooding

	Performance analysis
	Random walk performance
	Flooding performance

	Future work
	Acknowledgements
	Performance profilers
	The GNU profiler
	Program preparation & tool execution
	Profile interpretation

	Valgrind
	Program preparation & tool execution
	Profile interpretation

	Yeaton_Roberts.pdf
	Introduction
	Flux based effective thermal conductivity
	Time stepping method
	Code Verification Study
	Sample results
	Conclusion and Future Work
	Roberts.pdf
	Introduction
	Material Mixtures
	Effective Conductivity,
	Interface Reconstruction
	Basic Principles and Method
	Volume Fraction Gradient and Interface Line
	Interface Cell Area Resizing
	Find sub-cell centers and edges
	Resulting Interface

	Using the Interface Reconstruction
	Deriving Effective Conductivity with Cell Center of Mass
	Cell-Center Approximation

	Comparisons to Cell Averaging
	Conclusion
	Aknowledgements
	References

